VA A2 L E T BN A (W1

Theo yéu céu ciia khich hang, trong mt nim
qua, ching t6i 48 dijch qua 16 mén hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chwa tinh céc
tai liéu tir nim 2010 tr& vé truéc) Xem & diy

DICH VU Chi sau moét lan lién lac, viéc

DJCH dich duoc tién hanh
TIENG

ANH |
CHUYRN Gia ca: co thé giam dén 10

R R —
NHANH

NHAT VA Chét luqng:TE}o dung niém tin cho

CHiNH kh’éch hang bang céng nghé 1.Ban

XAC thay duoc to.:»fin b6 ban dich; 2.Bap

NHAT danh gia chat luong. 3.Ban quyeét
dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

https://drive.google.com/folderview?id=0B4rAPgIxIMRDfIBVOnk2SHNIbKR6NHJi

Tir ban géc:

thanhlam1910 2006@yahoo.com hoic frowrthes@gmail.com hoic s6 0168 8557 403 (gap

N1Z3N2VBaFJpbnlmbjhaO3RSc011bnRwbUxsczA&usp=sharing

Lién hé dich tai liéu :

Tim hiéu vé dich vu: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Lam)

Weakly  Stratified
Programs

Contents

1 Introduction 1
2 Notation
Definitions 3

3 Weakly

Logic | Chuong trinh logic phan tang

Stratified | 3 Cac chuong trinh phan tang

yeu

Noi dung

1 Giai thigu

and | 2 Ki hiéu va dinh nghia



https://drive.google.com/folderview?id=0B4rAPqlxIMRDflBVQnk2SHNlbkR6NHJiN1Z3N2VBaFJpbnlmbjhqQ3RSc011bnRwbUxsczA&usp=sharing
https://drive.google.com/folderview?id=0B4rAPqlxIMRDflBVQnk2SHNlbkR6NHJiN1Z3N2VBaFJpbnlmbjhqQ3RSc011bnRwbUxsczA&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Programs and Weakly Perfect
Models 4

4 Properties of Weakly
Perfect Models 10
5 Relation  to
Proposed Semantics

Other
14

1 Introduction

In this paper we address the
problem of declarative (or
intended) semantics for logic
programs. In [ABW88] Apt,
Blair and Walker and -
independently - Van Gelder
[VG89] (see also [CH85])

introduced the class of
stratified  logic  programs,
defined a wunique ‘natural’
Herbrand model Mp of a

stratified logic program and
argued that this model should
be used to represent the
intended meaning of such
programs.

T.Przymusinski [Prz88a]
extended the class of stratified
logic programs to a wider
class of locally stratified
programs and introduced the
notion of a perfect model of a
logic program. He showed that
every locally stratified logic
program has exactly one
perfect  Herbrand  model,
which - for stratified programs
- coin—cides with the ‘natural’
model Mp. In [Prz89b] the
definition of a perfect model
was extended to the class of
non-Herbrand models.

yéu va cac md hinh hoan hao
yéu

4 C4c tinh chat cua md hinh
hoan hao yéu

5 M&i quan hé véi cac ngir
nghia duoc dé xuat khac
declarative semantics: mot sb
tai liéu dich Ia ngr nghia mo
ta

1 Gidi thiéu

Trong bai bao nay, chung toi
phan tich van dé ngt nghia
khai bao (chu dinh) cho cac
chuong trinh logic. Trong
[ABWS88] Apt, Blair va
Walker doc lap véi Van
Gelder [VG89] (xem thém
[CH85]) ciing gidi thigu mot
l6p cac chuong trinh logic
phan tang, dinh nghia mé hinh
Herbrand “tu nhién” duy nhat
cua chuong trinh logic phén
tang va cho rang mé hinh nay
s& duoc dung dé biéu dién y
nghia chu dinh cua Ccéac
chuong trinh do.

intended meaning: mot sb tai
liéu dich la y niém da dinh
T.Przymusinski [Prz88a] da
mo rong lop chuong trinh
logic phan ting thanh Iop
chuong trinh phan tang cuc bo
rong hon va dua vao khai
niém moé hinh hoan hao cua
mot chuong trinh logic. Ong ta
da chang to rang mdi chuong
trinh logic phan tang cuc bo c6
dang mét mé hinh Herbrand
hoan hao, dbi véi cac chuong
trinh phan tang, mé hinh nay
trung v&i mo hinh “ty nhién”
Mp. Trong [Prz89b], dinh
nghia m6 hinh hoan hdo dugc
ma& rong sang I6p moé hinh phi




The class of perfect models of
a logic program has many
natural and desirable
properties. All perfect models
are minimal and for positive
logic programs the notions of
a minimal and perfect model

coincide. As shown in
[Prz88a, Prz89b] (see also
[Lif88, Prz88b]), perfect
models are  models of
McCarthy’s prioritized
circumscription [McC80,
McC86, Lif85] and thus

closely relate the semantics of
logic programs to an important

formalization of non-
monotonic reasoning.
Moreover,  for  stratified
programs T. Przymusinski

defined in [Prz89b] the so
called SLS-resolution, which
generalizes the standard SLD-
resolution and is sound and
complete with respect to the
perfect model semantics.

The class of logic programs
with  well-defined  perfect
model semantics is fairly
broad and is not limited to the
class of stratified or locally
stratified logic programs (see
Example  3.4).  Recently,
however, several researchers
pointed out that there exist
interesting and useful logic
programs with a natural
intended semantics, which do

Herbrand.

Lép md hinh hoan hao cua
Mot chuong trinh logic c6 céac
tinh chat tw nhién va tinh chat
dang quan tdm. T4t ca cac mod
hinh hoan hao déu cuc tiéu va
d6i véi cac chuong trinh logic
duong, khai niém cuc tiéu va
mo hinh hoan hao trung nhau.
Nhu da trinh bay trong
[Prz88a, Prz89b] (cling nhu
[Lif88, Prz88b]), md hinh
hoan hao la cac mé hinh han
ché pham vi wu tién cua
McCarthy [McC80, McC86,
Lif85] va do d6 thiét lap moi




not have perfect models
[GL88, VGRS90].

Example 1.1 Consider the
program P [GL88, Example
(2)] given by:

p(l,2) <-

q(X) <- p(X,Y), -<q(Y).

After instantiating, P takes the
form:

p(l,2) <-

ofl) < p(l2),"a(2)

a{1) «  p(LN)"9()

q(2) < p(2.2),_>9(2)
q(2) <-  p@1).-g(l).

This program is not locally
stratified, because the priority
relation < between atoms - as
determined by the dependency
graph of P - is not a partial
order (see [Prz88a]), namely
g9(l) < a{2) and q(2) < g(l).
Moreover, one can easily
verify that P does not have
perfect models. On the other
hand, it seems clear that the
intended semantics of P s
well-defined and IS
characterized by the Herbrand
model M = {p(l, 2), g(l), -
i9(2), -ip(l, 1), ->p(2,2).-
<p(2,1)} of P. The same
results would be produced by
Prolog, which further confirms
our intuition.

The cause of this problem is
fairly clear. Program P
appears to be seman-tically
equivalent to a locally
stratified program p*
consisting only of clauses (1)
and (2). Clauses (3), (4) and
(5) seem to be entirely




irrelevant, because p(l,
),p(2,1) and p(2,2) can be
assumed false in P. At the
same time, they are the ones
that destroy local stratifiability
of P and cause the non-
existence of perfect models. O
In this paper we propose a
natural extension of the class
of (locally) strat-ified
programs to a broader class of
weakly stratified programs,
which includes programs of
the type discussed above. We
also introduce the class of
weakly per-fect models of
logic programs. Every weakly
stratified program has a
(unique)  weakly  perfect
model, but the class of
programs admitting weakly
perfect mod-els IS
significantly larger than the
class of weakly stratified
programs. We prove that if a
logic program has both a
perfect model and a weakly
perfect model then they must
coincide.  Therefore, the
weakly perfect model
semantics is fully compatible
with  the perfect model
semantics.

The main idea behind those
concepts is to  remove
‘irrclevant’ relations in the
dependency graph of a logic
program and to substitute
components of the
dependency graph for its
vertices in the definitions of
stratification and  perfect
models. In the proposed




extension we stick very
closely to the original
definitions of  stratified
programs and their models.
We decompose the program
into strata and base its
semantics on the iterated least
model approach, which can
also be thought of as the least
fixed point of a suitable
operator. However, the
decomposition into strata is
performed dynamically rather
than statically. In the case of a
single stratum the weak
perfect semantics is simply
equivalent to the least model
semantics. As opposed to the
well-founded semantics
[VGRS90, Prz89a], the ¢east
models considered are always
2-valued.

As a result we obtain a
broader class of programs,
whose semantics possesses the
same natural features as the
perfect model semantics. In
particular, weakly perfect
models are minimal models of
P and they coincide with
models of prior-itized
circumscription. Moreover, for
weakly stratified programs
SLS-resolution is still sound
and complete with respect to
the weakly perfect model
semantics (for non-
floundering queries).

The class of programs with
weakly perfect models is
different from the class of




programs with well-founded
semantics - proposed by Van
Gelder, Ross and Schlipf in
[VGRS90] - and from the
class of programs with unique
stable model semantics -
defined by Gelfond and
Lifschitz in [GL88]. However,
the three approaches are
closely related. In particular,
the class of weakly stratified
logic programs is contained in
the class of programs with 2-
valued well-founded models
and the latter class is
contained in the class of
programs with unique stable
models [VGRS90].

2 Notation and
Definitions

By a logic program, we mean
a finite set of universally
quantified clauses of the form
V(A4—LA.. ALm),

where m>0, A is an atom and
L, are positive or negative
literals (see [L1084]).
Following a standard
convention, such clauses will
be simply written as:

A i— Li,..., Lm.

The alphabet of a program P
consists of all the constant,
predicate and function
symbols that appear in P, a
countably infinite set of
variable symbols, connectives
(-1,A,V), quantifiers (3, V) and
the usual punctuation symbols.
We assume that if P does not
contain any constants, then




one is added to the alphabet.
The language L of P consists
of all the well-formed
formulae of the so obtained
first order theory. The
Herbrand base Hp of P is the
set of all ground atoms of the
theory. Throughout the paper,
instead of the program P we
consider  its instantiated
version ground(P), which, in
the presence of function
symbols, may be infinite. We
consider  only  Herbrand
models of P, but a suitable
extension to arbitrary models
can be obtained in a
straightforward  way, by
following  the approach
presented in [Prz89b], where
non-Herbrand perfect models
of logic programs are
introduced.

By a partial interpretation M
of P we mean a signed subset
of the Herbrand base Hp of P,
l.e., a subset of Hp, some of
whose elements may be
negated and thus considered
negative. An interpretation of
P is a partial interpretation,
which decides the truth or
falsity of all atoms from Hp. A
model M of P is an
interpretation of P, in which
all clauses from P are
satisfied. A model M of P is
the (unique) least model of P,
if it contains less positive
atoms than any other model
M’ of P.




Definition 2.1 (Dependency
Graph [ABW88, VG89]) The
vertices of the dependency
graph Gp of a program P are
all ground atoms appearing in
P. The edges of Gp are
defined as follows. For every
clause
A<- Ai,..., An, ¢/?\,..., */2,,,.
in P and for every i <n a
positive directed edge from A,
to A is included in Gp
and for every j < ma negative
directed edge fromBj to A
IS included in Gp. The
dependency  (or  priority)
relations < and < between
ground atoms of P are defined
by:
(i) A<Biffthereis a
directed path from A to
B;
(i) A<Biffthereis a
directed path from A to
B passing through a negative
edge. O
3 Weakly Stratified
Programs and Weakly
Per-fect Models
In this section we extend the
class of (locally) stratified
programs to a broader class of
weakly stratified programs
and we introduce the class of
weakly perfect models of logic
programs. The underlying idea
Is to introduce the components
of the graph Gp and to
substitute them for the vertices
in the definition of
stratification and  perfect
models. First, we define the
notion of a component.




Definition 3.1 Let ~ be the
equivalence relation between
ground atoms of P defined as
follows:

4~ — (4 =B)V (A
<BAB<A).

We will call its equivalence
classes components of Gp. A
component is trivial if it
consists of a single element A,
such that A ft A. o

According to the above
definition, two distinct ground
atoms A and B are equivalent
if they are related by mutual
negative recursion, le.
recursion  passing through
negative literals.  Mutual
negative recursion is the
primary cause of difficulties
with a proper definition of
declarative semantics of logic
programs.

We now introduce an order
relation -< between the
components of the de-
pendency graph Gp.

Definition 3.2 Let C\ and C2
be two components of Gp. We
define:

C1<C2 = CI"C2A 3Ax g e,.
34-2eC, (Ax< 4).

We call a component C\
minimal, if there is no
component C2 such that C2 -<
Gi. O

Clearly, the relation -< and
therefore the minimal
components of Gp are
completely determined by the
syntactic form of the program
P. It is easy to see that it does
not matter which atoms A\ and




A2 one chooses from the
respective components. More
precisely:

Cl<C2 = CI"C2A VAXx g
Ci,VA2 g C2 (Ax < A2).

The order relation -< between
the components of the
dependency graph Gp
corresponds to the dependency
relation < between its vertices,
but, as opposed to <, it has the
added advantage of always
being a partial order.

Definition 3.3 By a partial
order we mean an asymmetric
and transitive re-lation. An
ordering < is said to be well-
founded if it does not contain
infinite decreasing sequences
Ag>A\>A2>.. .0
Proposition 3.1 The relation -<
is always a partial order.

Proof: The relation -< is
asymmetric, because if C -< C'
and C' -< C, then for any .4 G
Cand A'G C'we have A< A’
and A' < A. This implies that
A and A' belong to the same
component, which contradicts
CzC.

The relation -< is transitive,
because if C -< C' -< C", then
forany AGC,A'GC",A” G
C" we have A < A' < A”. By
transitivity of <  and
asymmetry of this implies that
C<C".o

The following proposition
immediately  follows from
[Prz88a, Theorem 5.4].
Proposition 3.2 For a logic
program p the following are




equivalent:

(i)  pis locally stratified,
(i)  The dependency
relation < is a well-founded
partial order;

(Ui) AU components of Gp
are trivial and the partial
ordering of components -< is
well-founded. O

Naturally, if the (instantiated)
program is finite, then the
condition of well-
foundedness in (i) s
automatically satisfied and
therefore p is locally stratified
if and only if all components
of Gp are trivial.

The ordering -< has the
following simple, but
important, property: for any
two distinct components C,C',
of which at least one is non-
trivial, either they are
independent of each other, in
the sense that there are no A £
c and B £ C', which are related
by A<BorB<A orc-<C|,
or ¢' -< ¢ (but not both, due to
the fact that -< is a partial
ordering).

Proposition 3.3 Suppose that ¢
and C' are distinct components
not both of which are trivial.
Suppose also that A G c, B G
C'and A<B. Thenc <C'
Proof: Suppose e.g. that c is
not trivial. There is an A'in ¢
such that A' < A and therefore
A' < B which implies ¢ <o0. O

The above proposition implies




that if ¢ and O are distinct
components - not both trivial -
and if ¢, C' are not related by
either ¢ -< O or C' -< ¢, then
models of p restricted to those
components are completely
independent of each other,
because they involve
predicates, which are not
related by the dependency
relation.
For any logic program p we
introduce  the  following
definitions.
Definition 3.4 By the bottom
stratum S(P) of p we mean the
union of all  minimal
components of p, 1.e.
SP)=[JC: C IS

a minimal

component of  Gp}.
By the bottom layer L(P) of p
we mean the corresponding
subprogram of p, i.e.

L(P) = the set of all clauses
from p, whose heads belong to
S(P).

Herbrand models of the
subprogram L(p) will be
identified with signed subsets
of the bottom stratum S(P). o
Observe that, if  the
instantiated program IS
infinite, then it may not have
any minimal components and
thus its bottom stratum may be
empty. For example, the
bottom stratum of the program
p(X) -<p(f(X)) is empty. In
view of Proposition 3.3, non-
trivial components ¢ in the
bottom stratum of p are
completely independent of the




remaining components in the
bottom stratum.

Example 3.1 Consider the
program P from Example 1.1.
The dependency ordering is
given by the following
relations:
q( 1) <a(2), a(2) <q(l),
q(h>p(1.2), a(l) > p(l, 1),
q(2) > p(2,2), a(2) >

p(2,1).

Program P has five
components:C% = {a(l),
W2k C2 = {p(l2)}C3
{p(l, 1)} C4= {p{2,2)} and
Cs5 = {p{2,1)}. Clearly,

Cu -<C\ for any
2 < k < 5. Consequently,
the bottom stratum S(P) of P -
defined as the wunion of
minimal components of P - is

given by:
sy = {nl,  2)p(l
).p(2,2),p{2,1)},

and the bottom layer L(P) of
P, i.e. the set of all clauses
from P whose heads belong to
S(P), is:

L(P) = {p(1,2) <-}.

Observe, that the bottom layer
L(P) of the above program P
has the least (Herbrand) model
M = {p(l,2),-ip(l1),-Ip(2,2).-
ip(2,D)}. o

If the bottom layer L(P) of P
has the least model M then we
can use it to remove from P all
‘irrelevant’ clauses and
literals. More generally, we
now introduce the operation of
reduction, which reduces a
given program P modulo its




partial interpretation M, by
essentially applying the Davis-
Putnam rule to P [CL73].

Definition 3.5 Let P be a logic
program and let M be a partial
interpretation of P. For an
atom, A in Hp, we will say
that M \= A if Ais in M and
we will say that M |= ->A if -
<A is in M. By a reduction of
P modulo M we mean a new
program obtained from P by
performing the following two
reductions:

. removing from P all
clauses which contain a
premise L such that M |= -m L
or whose head belongs to M
(in other words, removing all
clauses true in M);

. removing from all the
remaining  clauses  those
premises L which are sat-
isfied in M, i.e. such that M \=
L.

Finally, we also remove from
the resulting program all non-
unit clauses, whose heads
appear as unit clauses (facts)
in the program. This step
ensures that the set of
predicates appearing in unit
clauses, also called
extensional  predicates, is
disjoint from the set of
predicates appearing in heads
of non-unit clauses, also called
intensional predicates.

The so reduced program




does not contain any (positive
or negative) atoms which
occurred in M. In the Example
3.1 the reduced program P' =
consists only of the clause:

{ 1) <--9(2).

Clearly, P' does not contain
any literals from  S(P).
Observe that in the reduced
program we got rid of all the
‘irrelevant’ clauses (3), (4)
and (5) in P.

The idea  behind  the
construction of weakly perfect
models is as follows. Take any
program P = PO and let Mo =
0. LetP\= . find the least
model

M\ of the bottom layer L{P\)
of Pi and reduce P modulo Mo
U Mi obtaining a new
program P2 = MJjM1 ¢ Find its
bottom layer L{P2) and its
least model M2 and let P3 =
MoUmlum2 ' Continue the
process until either the
resulting k-th program Pf. is
empty, in which case Mp = Mi
U ... U Mf-i is the weakly
perfect model of P, or,
otherwise, until either S(Pu) is
empty or L{Pf.) does not have
a least model, in which case
Mp = Mi U ... U Mf.-i is the
partial weakly perfect model
of P.

We now generalize the above
approach, by giving a formal
transfinite defi-nition of a
(possibly,  partial)  weakly
perfect model Mp of a logic
program P.

Definition 3.6 Suppose that P




Is a logic program, and let Pq
= P, Mo = 0. Suppose that a >
0 is a countable ordinal such
that programs P$ and partial
interpretations Mg have been
already defined for all 5 < a.
Let

*,=U Ms,

0<S<a

Pa = sa = S(Pa), La = L(Pa).
\a

. If the program Pa is
empty, then the construction
stops and Mp = Na is the
weakly perfect model of P;

. Otherwise, if the bottom
stratum Sa = S(Pa) of Pa is
empty or if the least model of
the bottom layer La = L(Pa) of
Pa does not exist, then the
construction also stops and
Mp = Na is the partial weakly
perfect model of P.

. Otherwise, the partial
interpretation Ma is defined as
the least model of the bottom
layer La = L(Pa) of Pa and the
construction continues.

In the first two cases , a is
called the breadth of P and is
denoted by S(P). For 0 < a <
S(P), the set Sa is called the a-
th stratum of P and the
program La is called the a-th
layer of P.

In the process of constructing
the strata Sa, some ground
atoms may be eliminated by
the reduction and not fall into
any stratum. Such atoms
should be added to an
arbitrary stratum, e.g. the first,
and assumed false in Mp. O




The construction always stops
after countably many steps
and therefore the (partial)
weakly perfect model Mp of a
program P is always defined
and unique. A particularly
Important case of the above
definition occurs when all the
strata Sa consist only of trivial
components or - equivalently -
when all the program layers
La are positive logic
programs.

Definition 3.7 We say that a
logic program P is weakly
stratified if it has a weakly
perfect model and if all of its
strata Sa consist only of trivial
components or - equivalently -
when all of its layers La are
positive logic programs. In
this case, we call the set of
program’s strata {Sa : 0 <a <
S(P)} the weak stratification
of P.O

Remark 3.1 Observe, that
since every positive logic
program has the least model, a
program P is weakly stratified
if and only if whenever Pa is
non-empty Sa = S(Pa) is also
non-empty and consists only
of trivial components.

Example 3.2 Consider the
program P from Example 3.1.
We obtain:

Pi = P, Si = S(P) =
{p(1,2),p(1,1),p(2,2),p(2,1)},
Li=L(P) = {p(l,2)<-}.

and therefore

Mi  ={p(l,2),-p(L.1),-p(2,2).-




p(2.1)}.
Consequently, P2 =
{9(l) <— ->9(2)}, S2
{(7(2)} is the wunion of
minimal components of P2
and L2 = L{P2) = 0 is the set
of clauses from P2 whose
heads belong to S2. Therefore,
M2 = {->g(2)}. As a result,
P3=A/1'u;\12={g(1) 53

= {g(1)}> L3 = P3 End
M* =53 = {g(1)}*
Since P4 = MIUM2UM3 = the
construction is completed, P is
weakly stratified, {S1.S2.S3}
*s 'ts weak stratification and
Mr = A/, U A/, U A3 = {p(l,
2)19(')1 -p(l, 1)1 -p(2,2), -
p(211)1 _9(2)}

Is its unique weakly perfect
model. O

The preceding example can be
easily modified to illustrate
the notion of a partial weakly
perfect model of a logic
program.

Example 3.3 Consider the
program from Example 1.1
with an added atomic fact
p(2,1) For the new program P
we have:

Pi =P, Si =S(P)
={p(1,2),p(1,1),p(2,2),p(2,1)},
Li = L{P) = {p(l, 2) 4-, p(2,1)
/\_}’

and therefore

Mi = {p(l, 2),p(2,1), ->p(2.,2),
-=>p(l, 1)}.

Consequently,

P* = §; = {«(1) -«(2). «(2)

<52 — {<7(1)><7(2)}> L2 —
P2-

Since 1*2 does not have the




least model, the construction
stops here and we obtain a
partial weakly perfect model
MP = {p(|,2),p(2,1),2), _>p(|’
1)}. o

The class of programs
admitting  weakly  perfect
models is much broader than
the class of weakly stratified
programs.

Example 3.4 Let P consist of
clauses:

P4- <1 i— -1Pm

Then P has a single
component and therefore its
weakly perfect model is the
least model of P, namely Mp =
{p, ->g} (see Corollary 4.6).
Clearly, P is not weakly
stratified. See [PP88, Example
3.4] for a discussion of this
example.

Example 3.5 Let P be as
follows:
pi—qgrqi—rpri—p,~q
Again, P has a single
component and therefore its
weakly perfect model is the
least model of P and thus it is
empty. Naturally, P is not
weakly stratified.

4 Properties of Weakly
Perfect Models

The class of weakly stratified
programs extends the class of
(locally) stratified programs.
Theorem 4.1 Every (locally)
stratified program is weakly
stratified.

Proof: First, observe that if P
Is locally stratified, then so is
the reduced program P' = for
any partial interpretation M.




Therefore, for every a, the
program Pa is also locally
stratified. By Remark 3.1, it
suffices to show that Sa =
S(Pa) is not empty and
consists only of trivial
components, whenever Pa is
non-empty. By Proposition
3.2, all components of Pa are
trivial and their ordering -< is
well-founded. Therefore, Sa =
S(Pa) consists only of trivial
components and is not empty,
as long as Pa is non-empty.
This completes the proof. O

Weakly perfect models share
the property of minimality
with perfect models.

Theorem 4.2 Every weakly
perfect model is minimal.

Proof: Suppose that there is a
weakly perfect model M of a
program P, which is not
minimal.  Therefore, there
exists a smaller model N of P.
Let a < 5(P) be the smallest
ordinal such that M\Sa * N\Sa,
where by M\S we denote the
model M [ESIRICICOINE the
subset S of the Herbrand base
Hp of P. By definition, M\Sa
Is the least model of La. Since
M|S7 = iV|S7, for every 7 < a,
it is easy to see that N\Sa must
also be a model of La, which
Is strictly smaller than M\Sa.
This is a contradiction. O

The existence of a perfect
model of a logic program does




not always imply the existence
of its weakly perfect model.

Example 4.1 Suppose that P
contains clauses:

P(X) <--p(/PO), p(x)"*p(f(x)).

This program has the least
model in which p(X) is true
for every X and there—fore it
has a perfect model. It does
not have a weakly perfect
model because, although the
program itself is not empty, its
bottom stratum is empty.

As the following theorem
shows, for a program P with a
perfect model, the emptiness
of bottom strata of its non-
empty subprograms P' (or the
non-well- foundedness of the
ordering -< of components of
P) can be the only cause of
the non-existence of the
weakly perfect model of P.

Theorem 4.3 Suppose that a
logic program P has a perfect
model. If all non-empty
subprograms Pa constructed in
Definition 3.6 have non-empty
bottom strata Sa = S(Pa) then
P also has a weakly perfect
model and the two models
coincide.

Proof: Let K be a perfect
model of P. We will prove, by
induction on a, that the bottom
layer La of the program Pa has
the least model Ma and that
this model coincides with the
restriction Ka = K\Sa of the
perfect model K to the a’s




stratum Sa. This will show
that the construction of the
weakly perfect model
described in Definition 3.6 can
be successfully carried out to
the end and that it results in a
model, which coincides with
the perfect model K.

Suppose that our claim has
been proven for all 7 < a. We
will prove it for a. Let

*,=U Ms,

0<S<a

Pa = "~ Sa= S(Pa), La =
L(Pa). i\a

By the assumption, if Pa is not
empty, then so is Sa. Let K' be
the restriction of the perfect
model K to the set Hp —
Uocic« First we show that K'
is a perfect model of Pa. Let
U' be any clause from Pa.
There exists a clause U in P,
such that U' can be obtained
from U by removing from it
some premises which are
satisfied in Na. By the
inductive assumption, these
premises are also satisfied in
K. Since K is a model of U, it
follows that K' is a model of
U', which implies that K' is a
model of Pa. If K' were not
perfect, then there would exist
another model K" of Pa, which
is preferred to K' (see
[Prz89b]). Let K* be the union
of Na and K". It is easy to see
that K* is a model of P, which
is preferred to K, which is
impossible. This proves that
K" is a perfect model of Pa,




Now we show that the
restriction Ka of the perfect
model K' of Pa to the bottom
stratum Sa = S(Pa) of Pa is the
least model of the first layer
La = L(Pa) of Pa.

Indeed, otherwise there would
exist a non-trivial, minimal
component C of Pa such that
K\C is not the least model of
the program Pa restricted to C.
This follows from the fact
that, by Proposition 3.3, non-
trivial components C in the
bottom stratum of Pa are
completely independent of the
remaining components in the
bottom stratum and from the
fact that Pa restricted to the
union U of all its trivial
minimal components is a
positive logic program and
thus has the least model.
Consequently, since K' is a
perfect model, its restriction to
U must coincide with the least
model.

Therefore there must exist a
model T of La restricted to C
and an atom A in C such that
A £ Ka — T. Let T* be the
interpretation of Pa obtained
by taking the model K' and
modifying it by:

. Making all atoms B in
Hp which are greater than A
true in T*;

. Replacing the restriction
K\C of K' to the component C
by the model T.




It is easy to verify that the fact
that the component C is not
trivial implies that T* is a
model of Pa, which is
preferred to K.  This
contradiction completes the
proof of the theorem. O

In particular, if the instantiated
program P is finite then the
existence of its perfect model
guarantees the existence of its
weakly perfect model.

Corollary 4.4 Suppose that a
function-free logic program P
has a perfect model. Then P
also has a weakly perfect
model and the two models

coincide.
Proof: The instantiation of a
non-empty function-free

program is always finite and
therefore it results in a finite
set of components, which
therefore  contain  minimal
elements. O

Theorem 4.3 also implies that
the weakly perfect model
semantics is fully compatible
with  the perfect model
semantics.

Corollary 4.5 If a logic
program has both a perfect
model and a weakly perfect
model then they coincide.
Proof: If a weakly perfect
model  exists  then, Dby
definition, all of the bottom
strata Sa, for a < 5(P), are non-

empty. O
It can be easily seen that the
weakly perfect model

semantics is based on the




principle of iterated (2-valued)
least model semantics. In
particular, for programs with a
single stratum the weakly
perfect model semantics
coincides with the least model
semantics.

Corollary 4.6 If a logic
program P consists of a single
stratum (in particular, if it
consists of a single
component), then for a model
M of P:

M is weakly perfect = M is
perfect = M is the least model
of P.

Proof: Suppose that P consists
of a single stratum. By
definition, M is the weakly
perfect model of P iff M is the
least model of P. Moreover, it
is obvious from definition of
perfect models that the least
model of any logic program is
always perfect. Therefore, it
suffices to show that if M is a
perfect model of P then it is
the least model of P. This
result can be deduced from
Theorem 4.3, but the
following direct proof is much
simpler.

First notice that if P consists
of a single non-trivial
component C then M is the
least model of P. This follows
iImmediately from the
definition of perfect models
[Prz89b] and the fact that A <
B, for any two elements of C.
Secondly, if P contains only
trivial components then M is




also the least model of P. This
follows from the fact that then
P is a positive logic program
and perfect models of positive
logic programs are always
least models [Prz89b].

We know that P consists of a
single stratum. It follows from
Proposition 3.3 that any non-
trivial component C of Gp is
completely independent of the
re-maining components.
Consequently, M\C (M
restricted to C) must be a
perfect model of P\C (P
restricted to C) and thus, in
view of the above argument, it
must be the least model of
P\C. Similarly, the union C of
all trivial components of P is
completely independent of the
remaining components.
Consequently, M\C must be a
perfect model of P\C and thus
the least model of P\C. This
implies that M must be the
least model of P. o

It was shown in [Prz88a] that
perfect models of locally
stratified logic pro-grams are
in fact models of McCarthy’s
prioritized circumscription (a
similar result for pointwise
circumscription  has  been
proven in [Lif88]). This result
can now be stated in greater
generality.

Theorem 4.7 If Mp is the




weakly perfect model of P and
if {Sa : 0 <a<S(P)} is the
corresponding set of strata,
then Mp is the unique
Herbrand model of prioritized
circumscription CIRC(P;Si >
S2 >mmm)m

Proof: By definition, models
of prioritized circumscription
are constructed as follows. We
first chose a minimal model
M\ of the program P restricted
to the first stratum Si, i.e. a
minimal model of L\ and we
fix it, which is equivalent to
applying the Davis-Putnam
rule to P, resulting in a
reduced program P2. We then
choose a minimal program M2
of the program P2 restricted to
the second stratum, i.e. a
minimal program of L2, etc.

The construction of the
weakly perfect model follows
exactly the same pro-cedure,
but on each level we assume
the existence of the least
model and thus we have only
one choice of a minimal
model. This means that there
is only one model of
prioritized circumscription and
that it must coincide with the
weakly perfect model. O

In [Prz89b] T.Przymusinski
defined the SLS-resolution - a
modification of SLDNF-
resolution not requiring finite
failure - and showed that for
stratified  programs  SLS-
resolution is sound and
complete with respect to the




perfect model semantics. The
above result can be now
extended onto the class of
weakly stratified programs
with the weakly perfect model
semantics. We assume that all
queries are not floundered (see
[Prz89b]) and that all, not
necessarily Her-brand,
weakly perfect models of a
program are considered.

Theorem 4.8 For weakly
stratified  programs  SLS-
resolution is sound and
com-plete with respect to the
weakly perfect model
semantics.

Proof: The proof is completely
analogous to the proof of
completeness of SLS-
resolution for the perfect
model semantics, given in
[Prz&9b]. o

5 Relation to  Other
Proposed Semantics

As we mentioned in the
introduction, the class of
programs with weakly perfect
models is different from the
class of programs with well-
founded semantics - proposed
by Van Gelder, Ross and
Schlipf in [VGRS90] - and
from the class of programs
with unique stable model

semantics - defined by
Gelfond and Lifschitz in
[GL8S].

Example 5.1 The program P
from Example 3.4 has a
weakly perfect model, but it
does not have either a 2-




valued well-founded model or
a unique stable model. O
However, the three approaches
are closely related. Van
Gelder, Ross and Schlipf
[VGRS90] showed that every
2-valued well-founded model
Is also a unique stable model.
We prove the following result:
Theorem 5.1 For weakly
stratified programs P, all three
semantics coincide, i.e. the
weakly perfect model Mp of P
is also well-founded and
unique stable.

Proof: It suffices to show that
Mp is a 2-valued well-founded
model of P. We use
terminology and notation from
[VGRS90]. We will show by
induction that for every a <
S(P) and for every literal L, if
L G Ma then L £ I*, where I*
is the limit of sets la, defined
in [VGRS90].

Suppose that our claim has
been proven for all a < 7. We
will prove it for 7. By
definition, M7 is the least
model of L1 and L1 is the
bottom level of the program
P7=,mp.LetLGMT7.IfL
IS positive, then since L1 is a
a<-y 11

positive logic program, L must
belong to TLI (0) and
therefore, by the inductive
assumption, L must belong to
TP(I1*), and thus to Vp(I*).
Since I* is a fixpoint of the
operator V, this implies that L
G I*. If L = ->A is negative
then we define K={B :-<B G
M7}. We will show that K is




unfounded with respect to I*.
Since A G K, this will imply
that L = ->A G Up (I*), and
thus L G Vp(I*) C I*.

Since L1 is positive, if B G K
then every clause in L7, with
B as its head, must contain a
premise from K. Some of the
clauses from P, however, may
not belong to L7, because they
were removed before. But a
clause is removed only if it
contains as a premise a literal,
which is false in the union of
the previously constructed
models Ma. By the inductive
assumption, such premises are
also false in I*, which implies
that K is unfounded with
respect to I* and completes
the proof. O

There also exist programs with
2-valued well-founded models
which do not have weakly
perfect models and programs
with unique stable models,
which do not have either 2-
valued well-founded models
or weakly perfect models.
Example 5.2 [[VGRS90]] Let
P be given by:

This program has a unique
stable model M = {p, 6}, but it
does not have either weakly
perfect or 2-valued well-
founded models. O

Example 5.3 Let P be as
follows:

p <r- s,q,r
gi—rpri—pngsi—->p,
->(, ->r.

This program has a 2-valued
well-founded model M = {s},
which is  automat-ically




unigue stable [VGRS90].
Since it has only one
component and does not have
the least model, according to
Theorem 4.6 it does not have a
weakly perfect model. O

For stratified programs, the
perfect model semantics, has
been shown (see [Prz88b]) to
be equivalent to suitable forms
of all four major
formalizations of non-
monotonic reasoning in Al -
McCarthy’s  circumscription
[McC80, McC86], Reiter’s
closed world assumption
CWA  [Rei78], Moore’s
autoepistemic logic [Mo085]
and Reiter’s default theory
[Rei80] - thus establishing a
close link between the areas of
logic programming and non-
monotonic  reasoning  and
de-scribing a relatively large
class of theories for which
natural forms of different non-
monotonic formalisms
coincide.

Originally, it seemed that no
extension of this result will be
possible for classes of logic
programs significantly broader
than the class of stratified
logic programs. The reason
appeared to be the fact that, as
we have seen, all three
proposed extensions of the
perfect model semantics - the
stable model seman-tics
(based on autoepistemic logic
or default logic), the weakly
perfect model  semantics
(based on circumscription or
on CWA) and the 3-valued




well-founded semantics
(seemingly not based on any
specific non-monotonic
formalism, but defined for all
logic programs) - lead to
different results.

Recently, however, the second
author proved [Prz89c] that
the  well-founded  model
semantics is also equivalent to
suitable forms of all four
major formaliza—-tions of non-
monotonic reasoning.
However, in order to achieve
this equivalence, 3-valued
extensions of non-monotonic
formalisms are needed, which
is natural in view of the fact
that the well-founded
semantics is, in general, 3-
valued.

Using the concept of dynamic
stratification introduced in this
paper, the second author also
proved [Prz89a] that the (3-
valued) well-founded
semantics has  properties
entirely analogous to the
properties of the perfect model
seman-tics, which lead to a
natural notion of dynamic
stratification of an arbitrary
logic program. Further, the
concept of dynamic
stratification has been used in
[Prz89a] to extend the
definition of SLS-resolution
[Prz89b] to the class of all
logic programs and to prove
that SLS-resolution is sound
and complete (for non-
floundering  queries)  with
respect to the (3-valued) well-
founded model se-mantics




(see also [R0s89]).

As a result of these
developments, a fairly clear
picture emerges, showing the
existence of two different
semantics of logic programs
(stable and weakly perfect),
corresponding to standard 2-
valued non-monotonie
formalisms  (au-toepistemic
logic or default theory and
circumscription or CWA), and
a unique semantics (3-valued
well-founded), corresponding
to 3-valued formalizations of
non-monotonic reasoning. The
latter semantics is defined for
all logic programs, whereas
the former two are restricted
to their own, more narrow
domains. All three semantics,
however, coincide in the class
of weakly stratified programs.
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