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An alternative, and in many ways
more intuitive, way of thinking about
the Berry-phase expression for the
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electronic polarization, Eq. (30), is in
terms of Wannier functions (WFs).
The WFs are localized functions wn
labeled by band n and unit cell R,
that are constructed by carrying out a
unitary transformation of the Bloch
states -Onk. Thus, WFs and Bloch
functions can be regarded as two
different orthonormal representations
of the same occupied Hilbert space.
The construction is carried out via a
Fourier transform of the form

(41)

where the Bloch states are
normalized in one unit cell. There is
again some ‘“gauge freedom” in the
choice of these WFs; a set of Bloch
functions

'Onk} = e *n(K) |*nk}

results in Wannier functions |WnR}
that are not identical to the lwnR}. In
practice, the gauge is often set by
some criterion that keeps the WFs
well localized in real space, such as
the minimum quadratic spread
criterion introduced by Marzari and
Vanderbilt [20]. However, we should
expect that any physical quantity,
such as the electronic polarization
arising from band n, should be
invariant with respect to the phase
twist  Pn(k). A typical WF
constructed from the oxygen p-like
valence bands of BaTiO3 in its cubic
centrosymmetric phase is shown in
Fig. 5(a).

Once we have the Wannier
functions, we can locate the
“Wannier centers” rmR =
(WnR]|rjwnR}. Returning

momentarily to one band in 1D, the

phan cuc dién to (PT 30) theo cac
ham Wannier (cac WF). Cac WF la
cac ham cuc bo duoc dat tén la wn,
trong do n chi ving n va 6 don vi R,
cac ham nay dugc xdy dung bang
cach thuc hién bién ddi unita cua céac
trang thai Bloch Onk. Do d6, cac WF
va cac ham Bloch c6 thé duoc xem I
hai biéu dién truc giao khac nhau cua
cung mot khong gian Hilbert bi
chiém. Qua trinh rat ra ham nay duoc
thuc hién théng qua bién d6i Fourier
c6 dang

(41)
Trong d6 cac trang thai Bloch duogc
chuan héa trong mot 6 don vi. Ciing
cd mot “tu do gauge” nao do trong
viéc lya chon cac WF nay; mot tap
hop ham Bloch

'Onk} = e *n(K) |*nk}

Cho ra c4c ham Wannier khong dong




Wannier center of the WF in the unit
cell at the origin is just

Fig. 5. Oxygen 2p-like Wannier
functions in BaTiO3 as derived from
the maximal-lo-calization algorithm
of Ref. [20]. An isocontour of
Wannier-function  amplitude s
shown, illustrating the hybridization
of O 2p and Ti 3d orbital character in
the Wannier function. Oxygen atom
Is at center, four second-neighbor Ba
atoms also appear, and two first-
neighbor Ti atoms are hidden under
the d-like lobes of the Wannier
function. Left: Centrosymmetric
paraelectric structure. Right:
Distorted ferroelectric structure, in
which the Ti—O bond is shortened
in the upper half of the figure and
lengthened in the lower half,
resulting in enhanced p — d
hybridization in the upper portion of
the figure and suppressed
hybridization below. (See also Ref.
[34].)

If Eq. (41) is rewritten as

dk eikx |uk} ,

then it follows that

*N> = A J dk (~idketkx) |uk) = 77 ]
dk elkx i\dkuk) , (45)

where an integration by parts has
been used. Then

Comparing with Eq. (32) of the
previous section, we find that

that is, the Berry phase 0 introduced
earlier is nothing other than a
measure of the location of the
Wannier center in the unit cell. The
fact that 0 was previously shown to
be invariant with respect to choice of
gauge implies that the same is true of
the Wannier center xo.

where 0Onj is given by Eqg. (39). That
IS, the location of the n’th Wannier

| ik




center in the unit cell is just given by
the three Berry phases Onj- of band n
in the primitive lattice vector
directions Rj. In fact, the polarization
Is just related to the Wannier centers
by

(49)

This formula is very similar to the
ionic one given in Eq. (31), but now
the electron charge is taken to reside
at the Wannier centers while the
ionic charges reside at the nuclear
positions.

The Berry-phase theory can thus be
regarded as providing a mapping of
the distributed gquantum-mechanical
electronic charge density onto a
lattice of negative point charges of
charge —e, as illustrated in Fig. 6.
Then, the change of polarization
resulting from any physical change,
such as the displacement of one
atomic sublattice or the application
of an electric field, can be related in
a simple way to the displacements of
the Wannier centers rnR occurring as
a result of this change.

This viewpoint is illustrated for the
case of BaTiO3 by returning to Fig.
5, which shows the oxygen 2p-like
WF not only before (Panel (a)) but
also after (Panel (b)) a displacement
of the Ti sublattice by a small
distance along the — Z direction.
We can think of this WF as being
centered on the bottom oxygen atom
shown in the left panel of Fig. 1. A
calculation of the corresponding
displacement of the Wannier center
shows that it displaces strongly
upward in response. This occurs
because the hybridization between O
2p and Ti 3d orbitals is strengthened
in the top lobe of the WF, and




weakened in the bottom

lobe, leading to the “swelling” and
“shrinkage” of the d-like lobes that is
evident Fig. 5(b). This analysis
provides an insightful microscopic
explanation for the “anomalous
dynamical effective charges”
[Z*(O)~ —be, Z*(Ti)~ +7e] that
have been observed in this class of
materials [35,36].

6 The quantum of polarization
and the surface charge theorem

The alert reader may have noticed
that the formulas for the polarization
given in Egs. (30), (38), and (49)
have an arbitrariness modulo (e/O)
times a lattice vector R. This is
perhaps most obvious in connections
with Eq. (49), where the decision as
to which of the periodic array of
WFs is to be taken as belonging to
the home unit cell (the one labeled
lwn0}) is arbitrary in Eqg. (48).
(Actually, a similar indeterminacy is
also present in the ionic contribution,
Eq. (31).) It is also fairly obvious if
Eqg. (38) is evaluated via Egs. (40)
and (37), in which case each Berry
phase (n is indeterminate modulo 2n.
In Eg. (30), or in the continuum
evaluation (39) of Eq. (38), the
difficulty is more subtle. Returning
for the moment to the 1D, single-
band case, we pointed out in Eq. (36)
that, in general, a permissible gauge
change (phase twist) of the Bloch
functions allows for the phase to
evolve by 2nm as k is transported
around  the Brillouin  zone.
Evaluating Eq. (32) using Eq. (34), it
follows that (= (+ 2nmand P =P
em. The polarization is therefore
only well-defined modulo an
electron charge. In 3D, the




corresponding statement is that one
can apply a gauge twist

|Unk} = e-*n(k) |[Unk} (50)
obeying

Pn(k + Gj) =Pn(k) + 2nmnj, (51)
where Gj is the primitive reciprocal
lattice vector in direction j. Then (nj
= (nj + 2nmnj in Eq. (39), so that

e3

P=P-5E" B, (52)

Oj=1

where mj = n mnj. Once again, the
Berry-phase polarization is seen to
be ill-defined modulo eR/O, that is,
an electron charge times a lattice
vector divided by cell volume. This
uncertainty is sometimes known as
the “quantum of polarization.”

It is instructive to recall the
argument leading to Eq. (29), which
can be summarized by saying that
where dP/dA is given by Eq. (28).
The symbol “:=" has been introduced
here to emphasize that this equation
needs a special interpretation,
namely, that the two sides are equal
modulo the quantum eR/O, where R
is an arbitrary lattice vector. It is
Important to understand that while
each quantity on the left-hand side is
actually ill-defined wup to this
modulus, the right-hand side has a
definite and unambiguous value for a
given evolution of the system. That
Is, the evaluation of the polarization
change via Eg. (29) or (30) has a
fundamental limitation; some of the
information contained in the original
definition, Eq. (23), is lost—namely,
the information about the “choice of
branch” of the polarization modulus
eR/0O.

Fortunately this limitation is rarely




serious in practice. In most cases, the
change in polarization that can be
induced by a practical perturbation,
such as a small sublattice
displacement or electric field, is
insufficient to cause P to change by a
large fraction of eR/O. Where
exceptions exist, as for the case of
some strongly polarized
ferroelectrics such as PbTiO3, the
ambiguity can be resolved by
subdividing the adiabatic path into
several shorter intervals, for each of
which the <change in P is
unambiguous for practical purposes.

Nevertheless, the ambiguity inherent
in Eqg. (53) is an essential aspect of
the theory. For example, for the case
of a closed cyclic adiabatic evolution
of the system, in which the
parameter values Al and A2 label
the same physical state of the
system, Eq. (53) becomes

C eR

f d\ (d\P) = 0 modulo — .(54)

(As always, such equations are
defined under the assumption that
the system remains insulating
everywhere along the path in A
space.) The modulus cannot be
removed, because there are situations
(e.g., sliding charge-density waves)
in which the value of the integral is
not zero [37]. In such cases, one says
that there is “quantized adiabatic
charge transport” and the cyclic
evolution of A acts as a charge pump
that transfers an integral number of
electrons from one side of the unit
cell to the other in one cycle.

It is amusing to consider the
meaning of such a situation in the




context of the Wannier-function
picture introduced in the previous
section. Because the initial and final
states of the system are identical, the
arrangement of Wannier

ototo
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Fig. 7. Cyclic evolution in which
guantum of polarization does not, or
does, appear. Possible evolution of
positions of Wannier centers (—),
relative to lattice of ions (+), as
Hamiltonian evolves adiabatically
around a closed loop. Wannier
functions must return to themselves,
but can do so either (a) without, or
(b) with, a coherent shift by a lattice
vector.

functions must be identical.
However, if one follows individual
Wannier centers during the evolution
as illustrated in Fig. 7, they need not
describe closed loops. If they do all
describe closed loops, then the
circuit integral in Eqg. (54) does
vanish. On the other hand, if the
evolution results in the pumping of
Wannier centers across the unit cell,
then the system represents an
example of adiabatic charge
transport.

There is one more way in which the
indeterminacy of P modulo eR/Q
may be understood in a natural way.
In elementary electrostatics, one
learns that the macroscopic bound
surface charge density ab residing on
the surface of a sample is related to
the polarization in the interior by ab
= n m P, where n is the surface
normal. One defines the bound
charge ab by saying that no free
charge is present, but what,
precisely, does this mean? The




surface must be insulating, with the
electron chemical potential lying in a
gap that is common to both bulk and
surface. But this is not a unique
prescription. Consider, for example,
the case of an insulating crystal
having a surface band that lies
entirely inside the bulk band gap.
Then this surface band may either be
completely occupied or completely
empty, as indicated schematically in
the density-of-states plots shown in
Panels (a) and (d), respectively, of
Fig. 8. From the point of view of the
Wannier-function representation, this
corresponds to the question of how
many Wannier functions exist at the
surface, as illustrated in the
remaining Panels (b-c) and (e-f). In
either case, the condition of absence
of bound charge is satisfied. But the
surface charge densities a clearly
differ by an integer number of
electron charges per primitive
surface cell area Asurf, so we
conclude that [38]

However, this is perfectly consistent
with the fact that P is ill-defined
modulo eR/Q, since n m R = mc =
mQ/Asurf, where m is an integer and
c is the lattice constant of the crystal
in the surface-normal direction.

Fig. 8. Ambiguity of bound surface
charge. Panels (a) and (d) illustrate
the density of states of an insulating
crystal having a full valence band
(left) and empty conduction band
(right), and a surface band lying
entirely within the bulk gap (center)
that may either be entirely (a)
occupied, or (d) empty. Panels (b)
and (e) show the corresponding
charge densities, while (c) and (f)
illustrate the mapping to Wannier




centers in these two cases. As can be
seen by comparing (c) and (f), the
surface charges differ by precisely
one electron charge (or two for spin)
per surface unit cell area.

From arguments of this type, it
should have been possible to
anticipate this essential
indeterminacy in the definition of
crystal polarization. As a historical
aside, it is interesting to note that the
presence of this indeterminacy was
not widely understood and
appreciated until it was forced into
the light by the efforts of the
computational  electronic-structure
community to understand precisely
how  polarization  should  be
computed in practice. For further
discussion  of  the  subtleties
associated with the “quantum of

polarization,” the reader is referred
to Refs. [7], [38], and [39].




