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This work presents the first time-
domain analysis of pulse propagation
through stable, balanced nonlinear
periodic structures, with a focus on
design  towards all-optical signal
processing applications. The
propagation dynamics of ultrashort
pulses in the nonlinear structures with
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varying grating lengths and linear
grating strengths are investigated. In the
absence of a linear grating, with two
adjacent layers of nonlinear materials

(n,2 = 150 + (25 x 10-12
cm2/GW)/in), the pulse-bandwidth-
dependent  limiting  behavior is

investigated. The output peak intensity
of a 600 fs input pulse is found to be
limited to 1.2 GW/cm2 for a 290 "m-
long device. In the presence of a linear
grating, S- and N-curve transfer
characteristics are observed. A 720 “m-
long device with a 0.01 out-of-phase
linear grating (i.e., n1,2 = (1.50 ~ 0.01)
+ (25 x 10-12 cm2/GW)/in),
compresses a pulse down to 12% of its
original width. The results reported in
this work point to the promise of such
devices in signal processing.

Motivation

Telecommunications networks now play
an extremely important role in a world
where global communication has
become an essential element of
everyday life. These networks demand
great  bandwidth  for  networking
applications such as data browsing and
massive file transfer on the Internet,
multimedia-on-demand, video
conferencing, and much more.

To meet the increasing demand,
economical and efficient technologies
that provide higher capacity and
improved networking are critical.
Optical networking is the foremost of
such technologies because it can offer
higher speeds over long transmission
distances, providing unbeatable cost-
per-bandwidth due to the low loss and
managed dispersion of optical fiber over
a wide spectrum.
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In principle, the maximum information
capacity of a standard, commercially
available optical fiber over 100
kilometers is around 3 b/s/Hz [1].
Coupled with a maximum fiber
bandwidth of ~ 50 THz (corresponding
to a wavelength range from 1.2 to 1.6
Am), this means that an ultimate 150
Th/s can be achieved. In practice,
however, commercial networks are not
capable of operating close to this rate.
The transmission of multiple signals
simultaneously over the same fiber
provides a simple way for making use
of the abundant information capacity
offered by fiber optics [2]. In order to
achieve the highest possible
transmission rate, signal multipexing
techniqgues -  wavelength-division
multiplexing (WDM) and time-division
multiplexing (TDM) - are commonly
employed. In March 2001, NEC
Corporation set a new fiber optic
transmission record of 10.9 Thb/s by
transmitting 273 channels of data at 40
Gb/s per channel over 117 kilometers.
However, the bit rate per channel is
often limited to 40 Gb/s in commercial
systems due to the speed of electronic
components, and the optical limitations
imposed by fiber dispersion and fiber
nonlinearity. The two signal
multiplexing techniques, WDM and
TDM, are explained further in the next
section.

1.2.1 Mach-Zehnder Interferometer

A nonlinear Mach-Zehnder
interferometer has a nonlinear element
on one of the two parallel arms, as
illustrated in Figure 1.1 [4]. In the
nonlinear element, the properties of
Figure 1.1: A nonlinear Mach-Zehnder
Interferometer (M2).




the medium are dependent on the
intensity of the supplied optical field. In
other words, the presence of an optical
field modifies the properties of the
medium, which in turn, modifies
another optical field or the original field
itself. The refractive index (u) of a
nonlinear material can be expressed as:
u=no + u2l, (1.1)

where u0 is the linear part of the
refractive index, and u2 is the Kerr
coefficient of the material. In the case of
the Mach-Zehnder interferometer, the
control signal modifies the data signal
by altering the phase shift experienced
by the signal traveling in the nonlinear
arm. In the absence of the control
signal, the low-power data signal is split
into the two arms at the input and is
recombined at the output port where the
two optical fields interfere
constructively. Thus the input pulse is
reproduced at the output. If a control
signal is present such that a n relative
phase shift is introduced between the
two arms, the optical fields recombine
at the output port and interfere
destructively. The result is no output. A
Mach-Zehnder interferometer  can
therefore act to switch signals on and
off depending on the the control signal.
This is in effect a logic NAND
operation. If two control signals are
introduced, one for each nonlinear arm,
the Mach-Zehnder interferometer can
behave as a two-input XOR gate.

1.2.2 Fabry-Perot Resonator

A Fabry-Perot resonator consists of two
parallel, highly reflective mirrors
separated by a distance d. In a nonlinear
Fabry-Perot device, the medium in
between the mirrors is optically
nonlinear, as shown in Figure 1.2(a).




The input-output relation for this system
(Figure 1.2(b)) forms a hysteresis loop,
making this device a bistable system.
By definition, a bistable system has an
output that can take only one of two
distinct stable values [4]. Switching
between these values may be achieved
by a temporary change of the level of
the input. At a low input power (point
a), the nonlinear effect is negligible,

(b)

Figure 1.2: (a) A nonlinear Fabry-Perot
resonator. (b) Input-output relation: a
bistable system (reproduced from [5]).

resulting in low transmission. As the
input power is increased, the power
accumulates in the resonator, but the
transmission remains relatively low,
until point ¢ (threshold intensity Ith2) is
reached. Further increase of the input
power switches the device to a high-
transmission state (point d) because the
device operates near the resonance. At a
higher input power (point e), the device
IS tuned away from the resonance,
therefore reducing the power in it. As
the input power is decreased, the device
will remain in the high-transmission
state until point f (threshold intensity
Ithi) is reached. For a lower input
power, the device will switch to the
low-transmission state (point b) because
the device is further away from the
resonance. This process is described in
detail by Smith et al. [5]. The system
therefore takes its low value for small
inputs (I < Ithl) and its high value for
large inputs (I > Ith2), where Ith\ and
Ith2 are the thresholds as shown in
Figure 1.2(b). In the intermediate range,
Ith\ < lin < Ith2, however, any slight
change forces the output to either the
upper or lower branch depending on the




initial state. Thus, such a bistable device
can function as a switch, a logic gate,
and a memory element.

1.2.3 Directional Coupler

When two waveguides are sufficiently
close, light can be coupled from one
waveguide to the other. A nonlinear
direction coupler works based on this
principle (Figure 1.3 [4]). The refractive
indices and the dimensions of the
waveguides may be selected so that
when

Figure 1.3: A nonlinear directional
coupler (sorting a sequence of weak and
strong pulses).

the input optical power is low, it is
channeled into the other waveguide;
when it is high the refractive indices are
altered in the nonlinear material and the
power remains in the same waveguide
[4]. The detuning induced by the Kerr
nonlinearity effectively switches the
input signal from one waveguide to the
other. Besides switching and performing
logic operations, the device can be also
used to sort a sequence of weak and
strong pulses, separating them into the
the two output ports of the coupler, as
illustrated in Figure 1.3.

1.2.5 Periodic Structure

A simple nonlinear periodic structure
consists of alternating layers of linear
and nonlin-ear materials, as shown in
Figure 1.5. As a light beam propagates
through a nonlinear

Figure 1.5: Schematic of a simple
nonlinear  periodic  structure  with
periodicity A. The two adjacent layers
consist of one linear material with
refractive index na and one non-linear
material ~ with  intensity-dependent
refractive index nb(l).




periodic  structure, it experiences
multiple reflections upon successive
periods inside the structure. By
adjusting the period and the index of the
materials, constructive inter-ference in
reflection can occur such that the light
with one wavelength can be reflected
completely and the other wavelengths
are still  transmitted.  Light of
frequencies lying within the stopband
evanesce in this manner.

In a nonlinear periodic device, the
spectral position as well as the strength
of the stopband may in general be
intensity-dependent. The dynamic shift
of the stopband can detune a frequency
component out from the Bragg
condition at high intensities, thus
allowing the frequency component to
propagate  through  the  system
unimpeded - realizing the switching
function. Besides switching, periodic
nonlinear structures have also been
either  theoretically  predicted or
experimentally demonstrated to give
rise to pulse compression [6, 7], limiting
[8, 9, 10, 11, 12], and logic operations
[13, 14]. These potential abilities in
self-processing of temporal pulses
motivate research into exploring novel
designs of nonlinear periodic structures
to search for new functionalities and to
evaluate their prospective performance.
1.3  Thesis Focus

This thesis considers a specific class of
nonlinear periodic structures,
investigates and evaluates their potential
signal processing abilities, and discusses
their practicality. An understanding of
the fundamental concepts and previous
research are presented in Chap-ter 2. In
order to explore the time-domain signal
processing capabilities of the device,
theoretical and numerical algorithms are




used to simulate the device performance
in the time domain. Chapter 3 describes
the analytical framework of the
numerical algorithms, and Chapter 4
describes the details of the simulation
model for simulating the device
performance. Chapter 5 investigates the
temporal behavior of the device,
demonstrating the limiting and pulse
reshaping signal processing abilities.

2.1 Introduction

It was explained in the preceding
chapter  that nonlinear  periodic
structures have multiple potential
applications in  all-optical  signal
processing. In this chapter, a detailed
survey of the literature on the subject of
nonlinear Bragg gratings is presented. It
begins with a brief summary of some
basic concepts of Bragg gratings and
nonlinearity and a list of new capacities
which can be created by combining the
two. Then follows a survey on past
research on nonlinear Bragg gratings.
The concepts of both solitonic and non-
solitonic pulse propagation in these
Bragg gratings are discussed. Based on
this review, the objective of the thesis is
formulated and the remainder of this
work is laid out.

The present chapter reviews previous
findings on nonlinear Bragg gratings.
The chapter lays a foundation for the
remainder of the thesis by identifying
what is known and what is missing in
nonlinear periodic device operations. It
proposes an avenue in order to fill the
gap identified in the published
literature.

2.5 Thesis Organization
The organization of the thesis is as
follows:




In Chapter 3, the quantitative analytic
framework is derived for subsequent
deploy-ment throughout the remainder
of this thesis. The coupled-mode
equations that describe the evolution of
pulse envelopes in a nonlinear Bragg
grating are derived. The Bragg soliton
solutions of these coupled-mode
equations are also obtained
mathematically in this chapter. Chapter
4 describes the procedure for a
convergent numerical solution of the
equations derived. The numerical
method for solving the coupled-mode
system is explained. The boundary
conditions and the balance equations for
the system to be satisfied are identified.
Also in this chapter, the Bragg structure
studied in this thesis is defined and the
material parameters chosen for the
numerical simulations are stated and
justified. Both solitonic (expressions
defined in Chapter 3) and non-solitonic
pulses are explained. Chapter 5 reports
on three sets of time-domain analyses of
ultrashort pulse propagation through
different Bragg gratings with alternating
oppositely-signed Kerr co-efficients: (i)
0 linear grating; (ii) in-phase linear
grating; (iii) out-of-phase linear grating.
The term in-phase linear grating refers
to as the case when the material with the
higher linear index has a positive Kerr
coefficient, and the material with the
lower linear index has a negative Kerr
coefficient. Similarly, the term out-of-
phase linear grating means that the
material with lower linear index has a
positive Kerr coefficient, and the
material with higher linear index has a
negative  Kerr  coefficient.  The
numerical simulation results and the
mechanisms behind the observations are
discussed. The thesis concludes in




Chapter 6 with an overview of the
significant contributions made to optical
signal processing and suggests future
research directions.

3.1 Introduction

Before exploring the time-domain
signal processing capabilities of the
device, it is neces-sary to return to the
fundamentals to distill the essential
elements of Maxwell’s equations which
require attention for understanding the
evolution of pulses across a nonlinear
peri-odic structure. Different sets of
coupled-mode equations which describe
the pulse propa-gation in nonlinear
periodic structures have been derived
previously for the study of gap solitons.
The present chapter derives a set of
coupled-mode equations which capture
the physical mechanisms of one class of
stable nonlinear periodic structures.

3.2  Approximation of the Refractive
Index Function

The device under consideration consists
of materials of alternating, oppositely-
signed Kerr coefficients, as illustrated
earlier in Figure 2.3. If the variations of
the refractive in-dex due to the
combined effect of linear and nonlinear
index differences in the constituent
repeated subunits are much smaller than
the average index, the index of
refraction profile nA(z, |E|2) can be
approximately viewed as a periodic
function along the spatial prop—agation
direction of the structure, as illustrated
in Figure 3.1. The function nA(z, |E|2)
Refractive Index n(z, |E|2)

Figure 3.1: Refractive index profile of
the Bragg grating device along the
spatial propa—gation direction.

may be described analytically over one




period, as follows:

no2 +n,2|E2, if f<z<n® n=1, 2,..
with the periodic medium being a N-
layered quarter-wave stack. By using a
Fourier series expansion of this
function, nA(z, |[E|2) in Eq. (3.1) can be
resolved into a infinite sum of sine and
cosine terms:

where fo is the fundamental frequency:
fo — 1/A. The coefficients of an and bn
represent the amplitudes of the even and
odd terms, respectively. The quantity
nfo represents the nth harmonic of the
fundamental  frequency fo. The
coefficient ao is the mean value of the
periodic signal nA(z, |E|2) over one
period, as shown by the time average:
Coefficients an and bn are:

For an even function such as the one
shown in Figure 3.1, it can be proven
that bn = 0 and an = 0. By substituting
Eqg. (3.1) into Eq. (3.3), we obtain

Similarly, the Fourier coefficient an can
be evaluated as:

: if nis even

n(n01 - n02 + nnll |[E[2 - nnlI2|E|2)
sin(n*), if n is odd

Therefore, the index-of-refraction in Eq.
(3.2) can be rewritten as: nA(z, |

To simplify the above equation, four
new parameters are introduced: linear
index differ-ence (nok), average Kerr
coefficient (nnl), average linear index
(nln), and Kerr coefficient difference
(n2Kk):

Defining the wave number k as k — ,
Eq. (3.7) can be rewritten as:

nA(z, |E|2) — nIn + nnl|E|2 + 2nok cos
kz + 2n2K|E|2 cos kz (3.9)

3.3 Derivation of the Coupled-Mode
Equations




The electromagnetic wave equation
states:

where ¢ — 1/”e0”o is the speed of light
and E(z,t) is the electric field.

E(zt) —  A+(ztei(fc°z-w°4) +
A (z,t)e-i(fc°z+WOt) + higher-order
terms. (3.11)

wo — cko/|nlIn| is the center frequency
of a pulse, c is speed of light, and ko —
2n|nin|//Ao is the wave number of the
light. A+ and A- are the slowly-varying
envelope amplitudes of the incident and
reflected waves. Peak reflectance occurs
at the center of a forbidden band (Ao)
which can be written as Ao — 2nlnA
from Eqg. (2.1). In other words,
resonance in the first bandgap occurs
when k = 2KkO0. Substituting Eq. (3.11)
into Eq. (3.10), we obtain the first term
as:

and the second term in Eg. (3.10)
becomes

(neglected all higher terms in n2k) kO
"OC

The intensity term |E |2 in the above
equation can be expressed in terms of
A+ and A_as:

Then Eqg. (3.13) can be simplified to:
(3.15)

Thus, EQ. (3.10) can be represented in
terms of A+ and A- by combining Eq.
(3.12) and (3.15). If we group all the
ei(fc°z-wot) terms, we obtain

Using  product expansions and
simplification, the above equation
becomes

Similarly, by grouping all the e
i(fc°z+Wot) terms, we obtain the second
coupled-mode equation:

To simplify the two coupled-mode
equations (Eg. 3.17 and 3.18) further,
the spatial coordinate Z and time




parameter T are introduced, where Z —
woz/c and T — wot/nIn. This process of
parameter normalization ensures the
spatial and time parameters are of the
same unit; hence making the numerical
analysis  easier. The resulting
normalized coupled-mode equations
are:

3.5 Summary

In this chapter, a system of coupled-
mode equations were developed for
wave amplitudes in time and space
based on a Fourier series expansion of
linear and nonlinear refractive indices in
a nonlinear periodic structure. The
coupled-mode equations derived here
are rearranged for the special stable
class of nonlinear periodic structures
consisting of  al-ternating  Kerr
nonlinear materials. In the next chapter,
a simulation model built based upon this
system is described.

46 Summary

In this chapter, the model of pulse
propagation inside a nonlinear periodic
medium  was  further elaborated.
Specifically, the range of realistic
physical material parameters was
defined; a numerical algorithm was
described; and the two were combined
to produce preliminary results for
solitonic and non-solitonic  pulse
propagation. The analytical model of
Chapter 3, together with the numerical
methods and physical parameters of
Chapter 4, form the basis for the
explorations  of  nonlinear  pulse
propagation presented in Chapter 5.

5.1 Introduction

Optical limiting was predicted from the
steady-state analysis of nonlinear
periodic struc—tures with oppositely-




signed Kerr coefficients [11]. What
would be the temporal response of such
device? What applications can such a
device be utilized for? This chapter
en-deavors to find answers to these
questions - matters of both fundamental
and application- oriented interest. It
describes the original numerical results
obtained from the simulation model in
the preceding chapter, revealing the
limiting, pulse reshaping, and the S-
curve transfer functions. Detailed time-
domain analyses of the nonlinear pulse
propagation through three different
grating strengths are presented. The
mechanisms which deter-mine the
behavior of the pulse as it propagates
are also identified.

6.1 Thesis Overview

In present-day networks, most of the
complex signal-processing operations
such as switch-ing, logic functions, or
routing are performed in the electrical
domain. This necessi—tates costly
electro-optical (EO) and opto-electrical
(OE) conversions. The intent of this
work was to investigate the suitability
of a nonlinear Bragg structure with
alternating  oppositely-signed  Kerr
coefficients for high-speed all-optical
time-domain signal process—ing. Such a
device would reduce the need for
repeated EO and OE conversions.

Chapter 2 discussed the basic concepts
of Bragg gratings and nonlinearity in
order to establish a understanding of the
topic of nonlinear periodic structures.
Previous research on this topic was
reviewed. Although many different
nonlinear periodic structures have been
studied in the past, one important class
of stable devices, those with alternating




layers of nonlinear materials with
balanced Kerr coefficients, had been
neglected. It was therefore proposed to
study the temporal response of such
stable devices.

Chapter 3 derived a system of coupled-
mode equations which captures the
physical mechanisms of this class of
stable nonlinear periodic devices. Under
special circum-stances, a Bragg soliton
may propagate. The exact solutions for
a Bragg soliton were solved from the
coupled-mode system in this chapter.
The analytical framework described in
Chapter 3 was necessary in developing
a con-vergent numerical solution of the
equations. In  Chapter 4, the
implementation of this simulation
model was presented. The boundary
conditions were stated and the device
pa-rameters were defined and justified
according to the experimental literature
for nonlinear materials properties.
Simulations of Bragg soliton and non-
solitonic  pulse propagation were
presented to validate the method of
numerical solution.

Chapter 5 presented three sets of
numerical analyses of nonlinear pulse
propaga-tion through three different
grating strengths: no built-in linear
grating, in-phase linear grating, and out-
of-phase linear grating. The pulse
propagation in each case was
de-scribed and the mechanisms which
determine the behavior of the pulses
were identified. In the absence of the
linear grating, the limiting behavior of
the device was concluded to be pulse-
bandwidth-dependent. Here, the
mechanisms  behind pulse shape
formation for long-duration pulses were
distinguished from those for short-
duration pulses. In the presence of the




out-of-phase linear grating, S-curve
transfer characteristics were predicted
and explored. The simulation results
were also used to illustrate and explain
the pulse compression effect. A
mathematical proof was provided to
confirm the understanding of this effect.

6.3  Future Prospects

It is clear that in order to advance
networks beyond the rate of electronics,
there is a push to do more with optics
and less with electronics in the core of
the network. This work presented the
theoretical analysis of a stable class of
one-dimensional nonlinear  periodic
devices and predicted the design
requirements for their time-domain
processing functions. However, the
model developed for this work does not
include linear absorption, nor does it
account  for  saturation of the
nonlinearity. Furthermore, the time
response of the nonlinear materials with
Kerr coefficients on the order of 10 12
cm2/W was assumed to be small
relative to the widths of pulses
considered. Following are a few future
directions for the continuation of this
work:

. Extend the physical model to
account for absorption, saturation of the
Kerr non-linearity, and a material
response time comparable to the pulse
evolution time.

. Extend the theoretical work to
two-dimensional devices to provide
confinement in the lateral dimension.

. Further extend the numerical
model to the consideration of three-
dimensionally periodic devices. This
corresponds to an implementation,
currently being devel-oped at the
University of Toronto, of colloidal




crystal-based self-organized photonic
crystals whose constituent periodic
repeat units consist of Kerr-nonlinear
materials with nearly-matched linear
refractive indices. The model would
result in a series of coupled-mode
equations which account for modes
strongly coupled via vectors of the
reciprocal photonic lattice.




