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5.2  Three Case Studies 1 h

This chapter focuses on studying the
behavior of a non-solitonic pulse (a
Gaussian pulse) propagates in a stable
nonlinear periodic structure. The steady-
state analysis of this device [11] revealed

5.2 Ba truong hop can xét (ba nghién
ctru tinh hudng)

Chuong nay tap trung nghién ctru dac
tinh cua xung phi soliton (xung Gauss)
truyén trong mot cau trdc tuan hoan phi
tuyén 6n dinh. Qua phép phan tich trang
thai xac lap (6n dinh), ching ta thy cac
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its stable limiting characteristic where the
transmitted intensity /tran is independent
of high incident intensity /in for cw
inputs, and the function /tran(/in) is an
one-to-one function (i.e., one input
corresponds to only one output). In the
case of a perfectly balanced nonlinearity,
nnl = 0, it is proven in [11] that the
grating operates in the stable limiting
regime for both the in-phase (nOk > 0)
and out-of-phase (nOk < 0) cases.

In this chapter, three cases in the stable
regime are studied with pulse inputs to
explore the instantaneous temporal
response of the device:

()  no linear built-in grating (nOk = 0)
with balanced Kerr coefficients (nnl = 0),
Built-in: tich hop san, c6 san, di ton tai

(i) in-phase built-in grating (nOk > 0)
with balanced Kerr coefficients (nnl = 0),

(iii) out-of-phase grating (nOk < 0) with
balanced Kerr coefficients (nnl = 0).

In all three examples, the consideration of
balanced Kerr coefficients implies that
the average index of the grating remains
fixed even as the pulse propagates
through. The position of the center of the
stopband (dai chin, dai chan) therefore
remains fixed, and it is the amplitude of
the grating, and its relationship with the
built-in linear grating amplitude, which
varies.

5.3 Case (i): No Linear Grating with
Balanced Non-linearity (nOk = 0 and nnl
= O)

Figure 5.1 illustrates the refractive index
profile of the Bragg grating structure with
alternating layers of materials with
identical linear refractive indices and

tinh chat gii han cudng d6 on dinh cua
thiét bi trong d6 cuong do truyén qua...
khéng phu thuoc vao cuong do toi...
dbi véi cac dau vao lién tuc, va ham
...1a ham mot-mot (tac 12 mot dau vao
twong ng v&i mot dau ra). Trong
truong hop can bing phi tuyén hoan
hdo,..., nguoi ta chitng minh riang [11]
cach tir hoat dong trong ché do gigi han
cudng do 6n dinh dbi véi ca trudng hop
dong pha ....va léch pha ....

Trong chuong nay, chung ta s€ nghién
ctru ba trudng hop trong ché do 6n dinh
VGi cac dau vao xung dé khao sat dap
trng thoi gian tac thoi cua thiét bi:

(i) khdng cd céach ta tuyén tinh built-in
.....voi cac hé so Kerr can bang....

(i) Cach ttr buit-in dong pha....voi cac
hé sb Kerr can bang .....

(iii)Cach tir léch pha....v6i cac hé sé
Kerr can bang ....




oppositely- signed Kerr coefficients, i.e.,
nOk = 0 and nnl = 0. The steady-state
analysis of this device is described in
Figure 5.2, and shows the transmittance
as a function of incident intensity. The
inset of Figure 5.2 illustrates limiting
behavior, wherein the intensity of the
transmitted light is clamped, approaching
asymptotically the limiting intensity as
incident  intensity  increases. What
happens when a ultrashort pulse is
incident onto the device instead of a cw
wave? Will the device demonstrate
limiting behavior? Will the device display
other interesting functionalities? The
following sections will address these
questions.

Figure 5.1: Profile of the linear refractive
indices and Kerr coefficients of the
device along the device length for case
study (i). The refractive indices of the two
adjacent layers are

5.3.1 Optical Limiting

For  comparison,  similar  device
parameters as in the steady-state analysis
(nonlinearity, length, and periodicity) are
applied to investigate the instantaneous
temporal response of the structure.
Instead of the cw inputs as in the steady-
state analysis, pulses which take the form
of (4.12) are introduced for the following
time-domain study. These pulses have a
fixed transform-limited width (do rong
xung cuc tiéu kha di cia mot phd quang
hoc nao do) of 605 fs with different peak
intensities (cuong d6 peak, cuong do
dinh) to give varying energies. This pulse
width  corresponds to a  spectral
bandwidth of 1.6 THz which is smaller
than the maximum bandwidth of the
stopband created by the nonlinear grating,
e, Aw~w =17 THz.

Figure 5.3 illustrates the energy




transmittance as a function of incident
pulse energy. The term ‘energy
transmittance’ is defined in a similar way
to the intensity transmittance in the cw
case: it is the ratio of the total transmitted
energy density Wtran to the total incident
pulse energy density Win, where the
energy densities are defined in Eq. (4.11).
The peak intensities of the transmitted
pulses are also recorded, and plotted in
the inset of Figure 5.3. The limiting
behavior demonstrated in this figure
closely resembles the steady-state
response reported in Figure 5.2. The
limiting effect

Figure 5.2: Steady state analysis:

Transmittance as a function of incident
intensity for various device lengths: L =
70 Am, 180 “m and 290 “m. Inset:
transmitted intensity level versus incident
intensity  for the same  device,
demonstrating  characteristic  limiting
behavior.

Is less pronounced for energy. However,
in contradistinction with steady-state
average power results, the time-domain
transmitted energy is not asymptotically
limited. For very low incident peak
intensities the refractive indices of the
two adjacent layers are matched. Thus the
device is transparent to the incoming
light, resulting in a close-to- unity
transmittance. Increasing the intensity
causes the indices to change, which
creates a grating, leading to reflection. As
the peak intensity (cuong do peak, cuong
do6 cuc dai, cuong d6 tai dinh xung) of the
incident pulse increases further, the peak
intensity of the transmitted pulse
eventually  approaches a  limiting
intensity. Figure 5.3 also illustrates the
decreasing limiting intensity  with




increasing number of periods (longer
devices). The transmitted peak intensity
of a 605 fs pulse is shown to be limited
roughly at 1.2, 1.6, and 2.8 GW/cm2 for a
290, 180, and 70 “m-long device,
respectively.

The results presented in Figure 5.3 are for
fixed incident pulse width. In contrast,
Figure 5.4 illustrates the energy
transmittance as a function of pulse
width, given that the incident peak
intensity remains constant. In these
numerical computations, the incident
pulse again takes the form of (4.12) with
a fixed peak pulse intensity of /peafc = 4
GW/cm2, such that the maximum
magnitude of change in the refractive
index is equal to the chosen 0.01. The
graph displays the limiting behavior of
the pulse transmission and the
bandwidth dependence of the
transmission.

Long-duration pulses in Figure 5.4
exhibit the desired limiting behavior
because their spectral bandwidth lies
entirely inside the stopband of the
grating, leading to bandwidth-
independent transmittance. Short-duration
pulses, on the other hand, have a spectral
bandwidth which exceeds the width of the
dynamic  stopband, resulting in
transmission of the portion of the power
which lies outside of the stopband of the
device. In the Ilimit of short pulse
duration, the pulse bandwidth is wide
enough that most of its power lies outside
the nonlinear stopband; hence the pulse
transmittance approaches unity. The knee
in the characteristic of Figure 5.4 occurs
when the pulse bandwidth and nonlinear
stopband bandwidth become comparable:
In Figure 5.4, the transmittance decreases
from 0.75 to 0.25 when the device length
Is increased from 70 “m to 290 “m. The




pulse intensity decays as the pulse
evanesces along the length of the device.

We now consider the case of pulses of
fixed energy, where the intensity and
temporal width are co-varied to satisfy
this constraint. The spectral bandwidth
(L/FWHM) in—creases with the same
proportionality as the bandwidth of the
grating (An <x n2/peafc). If a given pulse
has a peak intensity, bandwidth, and
n2/peak combination such that the pulse
bandwidth lies within the nonlinear
grating bandwidth, then it will continue to
do so when a second pulse of the same
energy with narrower temporal width and
higher in peak intensity.

In summary, an optical limiter may be
designed which will guarantee that its
output peak intensity will be less than a
required intensity. This is achieved
through the choice of the number of
layers, peak intensity, and temporal
width. It is observed that the time-
domain transmitted energy is not
asymptotically limited as in the steady-
state case. It is also noted that the limiter
does not require large number of layers.
For instance, the transmitted peak
intensities of a 605 fs incident pulse (with
a characteristic length of 180 *m) are less
than 1.2, 1.6, 2.8 GW/cm2 for a device
length of 290 *m, 180 “m and 70 “m,
respectively.

5.3.2 Pulse Shaping

In Section 4.5, Figure 4.2 illustrated the
non-solitonic character of Gaussian pulse
propa-gation  through a balanced
nonlinear structure with constant linear
indices (NOk = 0 and nnl = 0). Both the
amplitude and the shape of the Gaussian




pulse were distorted. The shape of the
transmitted pulse depended on the size of
the structure and the initial pulse width.
Figure 5.5 shows the transmitted pulse
shapes through a 180 “m-long device for
two different temporal widths. The input
Gaussian pulses are 605 fs wide in Figure
5.5(a) and 1440 fs wide in Figure 5.5(b),
and both have a 4 GW/cm2 peak
intensity.

The bandwidth of both pulses is much
less than the effective bandwidth of the
device, allowing us to focus attention on
intensity self-patterning of the pulses and
to remove the effects of incomplete
spectral blocking. To explain the
distortion in the transmitted pulses, the
time-dependent transmittance of the
induced nonlinear grating is calculated,
and illustrated in Figure 5.6(a) and 5.6(b).
For the shorter pulse length of 180 "m,
Fig-ure 5.6(a) shows that the forward-
and backward-propagating waves form
their strongest instantaneous gratings at
different  times.  The  backward-
propagating wave gives rise to an
additional delayed replica of the
transmitted pulse in the time-dependent
transmit-tance, causing the dip in the
transmitted pulse of Figure 5.5(a). When
the incident pulse is longer than the
device (435 “m in this example), the
strongest instantaneous gratings are
formed roughly at the same time for
forward- and  backward-propagating
waves (Fig-ure 5.6(b)). Sequential
multiple reflections of pulses inside the
relatively short structure create echoed
patterning of the transmitted pulse seen in
Figure 5.5(b).

Figure 5.5: Input and output intensities of
a pulse propagating through a 180 “m-




long device for an input pulse width of:
(@) 605 fs or characteristic length of 180
"m and (b) 1440 fs or characteristic
length of 435 ~m.

Figure 5.6: Heuristic analysis of pulse
shaping in a 180 ”“m-long nonlinear
grating. The time dependent
Instantaneous transmittance attributable
to contributions from forward- and
backward-propagating pulses for an input
pulse width of: (a) 605 fs or characteristic
length of 180 “m and (b) 1440 fs or
characteristic length of 435 *m.

5.4 Case (ii): In-phase Built-in Linear
Grating with Balanced Nonlinearity (nOk
>0 and nnl =0)

Linear refractive index n0

Figure 5.7: Profile of the linear refractive
indices and Kerr coefficients of the
device along the device length for case
study (ii). The refractive indices of the
two adjacent layers are noi + n,n/ and
no2 + n, where nnn = —n,,i2.

We now consider periodic structures with
an in-phase linear built-in grating such
that nOk > 0 and n2k > 0, as illustrated in
Figure 5.7. The intensity-induced
nonlinear grating adds constructively to
the existing built-in linear grating,
resulting in low transmittance. No
significant transmitted pulse energy is
observed for a large range of different
input pulses, since most of the incident
light is blocked by the linear built-in
grating. This is evident in the bottom
curve of Figure 5.9(a), constructed for the
in-phase linear grating with nOk = 0.01,
le. n1,2 = (1.50 £ 0.01) £ (2.5 x 10-12
GW/cm2)/in.




5.5 Case (iii): Out-of-phase Built-in
Linear Grating with Balanced
Nonlinearity (nOk < 0 and nnl = 0)

Linear refractive index n0

Figure 5.8: Profile of the linear refractive
indices and Kerr coefficients of the
device along the device length for case
study (iii). The refractive indices of the
two adjacent layers are noi + n,n/ and
no2 + nl, where = — n\.

Here periodic structures with an out-of-
phase linear built-in grating are
considered, such that nOk < 0 and n2k >
0, as shown in Figure 5.8. The out-of-
phase linear built-in grating allows for a
dynamic balance with the intensity-
induced nonlinear grating as the pulse
propagates through the structure. When
the intensity of the pulse exceeds that
required to take the instantaneous
nonlinear grating through the zero point
and over to the other sign, the grating is
bleached and then re-established as the
incident pulse propagates through the
structure.

55.1 S-curve and N-curve Transfer
Characteristics

We begin by investigating the effects of
grating strength on the transmittance of
the de-vice. In this analysis, a fixed
incident pulse with width of 605 fs is
launched at structures with linear out-of-
phase gratings of nOk = —0.002, nOk =
—0.005, and nOk = —0.01. The intensity
Icl = |nOk |/n2k which causes the
nonlinear index change to balance
completely with the out-of-phase linear
grating, is referred to as the closing
intensity. When the balance between
linear and nonlinear grating closes the
overall grating profile, the device is




locally transparent. The total transmitted
pulse energy density versus the total
inci-dent pulse energy density is shown
in Figure 5.9(a) for the out-of-phase
linear gratings listed above. The pulse
energy transmittance is shown in Figure
5.9(b) for the same out-of-phase linear
gratings.

When the out-of-phase linear grating is
large enough to effect a significant built-
in reflectance (for example, when the
built-in linear index difference is 0.01),
the trans-mittance reveals an interplay
between built-in and intensity-dependent
grating behavior. At small incident pulse
intensities the linear built-in grating
blocks most of the light, resulting in a
close-to-zero transmittance. The
transmittance gradually increases as the
increasing intensity-induced nonlinear
index change offsets the linear grating.
The clos-ing and reopening of the grating
are responsible for the S -curve character
of the transfer function in Figure 5.9(a),
which may be used for optical logic gates
such as an AND gate [31, 38]. The energy
transmittance is at its maximum when the
peak intensity of the incident pulse is at
the closing intensity. Here the regions
around the peak of the pulse bleach out
the grating.

Long-duration pulses exhibit the limiting
trend of Figure 5.9(b). However, the
energy transmittance of linear built-in
gratings does not converge to the case of
constant linear index across the device:
the more intense are the input pulses, the
more there exist regions where the self-
induced nonlinear grating matches with
the built-in linear grating, and the
transmittance is higher than that with no




linear grating.

Since the energy transmittance displays
an interesting S-curve character for a
grating strength of 0.01, this grating
strength becomes the focus of the study.
The transfer characteristics of the peak
intensities are plotted in Figure 5.10.
Unlike the one-step limiting
characteristics as shown in the inset of
Figure 5.3, the peak intensities of the

Energy density of input pulse (GJ/cm)

Figure 5.9: (a) Total pulse transmitted
energy density versus total incident pulse
energy density for linear in- and out-of-
phase built-in gratings;

(b) Corresponding energy trans—mittance
as a function of incident pulse energy. A
pulse width of 605 fs and a device length
of 180 “m were fixed for all cases.

Incident Pulse Peak Intensity (GW/cm2)

Figure 5.10: Transfer characteristics of
pulse peak intensities for varying device
lengths: (a) S-curve for the peak
intensities of the transmitted pulses; (b)
N-curve for the peak intensities of the
reflected pulses. 11 and 12 are two
threshold intensities. Incident pulses with
a fixed width of 605 fs propagate through
device length of 70 ~m, 180 *m, and 290
m. The device has a 0.01 out-of-phase
linear grating.

transmitted and reflected pulses exhibit
an S- (Figure 5.10(a)) and an N-curve
character (Figure 5.10(b)), respectively.
These characteristics are more obvious
for longer devices.




The S- and  N-curve  transfer
characteristics can enable a complete
logic set [31]. We consider the curve with
the device length L = 290 ~m, for
example: an incident pulse which is
combined by 2 input pulses from a 3 dB
coupler propagates through the nonlinear
periodic structure with the S-curve
transfer character. If a logic 1 is assigned
to the peak intensity corresponding to | >
12 in Figure 5.10(a) and a logic O is
assigned to the peak intensities
corresponding to | < 11, an output will
only be observed when both input pulses
are present, i.e. linl,lira2 > 12. This is an
AND operation.

In summary, optical logic gates may be
formed using a nonlinear periodic
structure with a linear built-in grating.
The longer the device, the better the
functionalities. S- and N-curve transfer
characteristics required for optical logic
gates are observed.

5.5.2 Pulse Compression

We now proceed to examine the influence
of device length on transmitted pulse
shapes in the presence of an out-of-phase
linear grating with nOk = —0.01. The
peak intensity of the incident pulse is
fixed to Ipeafc = 4 GW/cm2 to close the
grating, and the pulse width is fixed at
FWHM = 605 fs. The initial stage of the
pulse compression, reshaping and high-
amplitude  multiple-peak  oscillation
effects are shown in Figure 5.11 for
different device lengths. A maximum of
88% pulse compression is observed for a
720 "m-long device. This process
resembles Gaussian pulse propagation in
the out-of-phase linear gratings displayed
in Figure 4.3. Figure 4.3 and Figure 5.11




differ only in the parameters used for the
incident pulse. For a smaller peak
intensity Ipeak and larger pulse width, the
pulse reshaping and multiple-peak
oscillations in Figure 5.11 occur further
into the device as compared to those in
Figure 4.3. For this reason we study in
detail the initial stage of pulse
compression for L < 300 “m, when the
compressed Gaussian pulse preserves a
single-peak shape.

It can be proven analytically that pulse
compression can result from an out-of-
phase built-in linear grating, assuming the
incident pulse takes the form of (Eq.
4.12). For = 0, zero initial conditions, and
a real boundary value of A+(0,T) =
\J/in(T), the coupled-mode system (3.19)-
(3.20) can be simplified to

A+=u(ZT), A _=iy(Z T),

where u and y are real variables satisfying
the system:

It follows from Eqg. (5.3) if nOk < O that
the time-derivative dy/dT is negative for
y « 0 and 0 < u(T) < \JTCi. Here Icl =
[nOk|/n2k is the closing intensity.
Therefore, when the Gaussian pulse (EqQ.
4.12) enters the device at the input Z = 0,
the generated backward wave (song
nguoc, song Ii, séng phan hdi) field y is
always negative. The other equation (5.2)
defines the rate of change of the pulse
amplitude in the reference frame moving
to the right with unit speed (the speed of
the Gaussian pulse). At the peak of the
Gaussian pulse, the rate of change is
positive if y < 0 and Ipeak > Icl.
Therefore, the Gaussian pulse with peak
intensity Ipeak exceeding the closing
intensity Icl is compressed in width and




increased in peak amplitude by the out-
of-phase built-in linear grating. On the
other hand, similar analysis shows that
the Gaussian pulse with Ipeafc < Icl, or
the Gaussian pulse in the in-phase built-in
linear gratings with nOk > 0, s
decompressed in width and decreased in
amplitude during propagation in the
nonlinear periodic structure.

To validate and explain the observation of
pulse compression, we seek to reveal the
evolution of the pulse, and consequently
the instantaneous grating, in time and
space across the device. Figure 5.12(a)
shows the rate of change in amplitude of
the for-ward propagating wave, or  , in
a 180 “m-long device. As follows from
Eqg. (5.2), the forward-propagating wave
iIs enhanced when the backward-
propagating wave is coupled in.
Moreover, the rate of change in amplitude
of A+(Z,T), or + 17+), resembles the
profile of the backward propagating
envelope A-(Z,T). The M-shaped graph
along the time axis describes the
existence of pulse propagation along the
device length.

Figure 5.12(b) provides insight into the
mechanism of pulse compression. In
Fig-ure 5.12(c) we compare a reference
input pulse to a compressed pulse. The
slopes of the amplitude of the compressed
envelope is smaller than that of the
reference Gaussian pulse at the beginning
stages of a compressing process (up to
time t = a). The slopes of the compressed
pulse then increases dramatically before
reaching the peak. The slopes of the
compressed pulse is bigger than that of
the reference pulse at the range time c <t
<h.

Figure 5.12: (a) Rate of change in
amplitude of the forward propagating




wave; (b) top view of (a); (c) a simplified
intensity diagram of an incident pulse and
a compressed pulse; (d) a plot of the
Intensity of the propagating wave in time
and space. A pulse with lpeafc = 4
GW/cm2 and FWHM = 605 fs is
launched into the input of a 180 “m-long
device.

Similar arguments apply to the second
half of the compressed pulse, except the
slopes of the compressed envelope are
smaller compared to the reference pulse
attimeb<t<c,

and bigger after t = c at the final stages of
the compressing process. The
convergence of the four slopes of the M-
shape along the device length in Figure
5.12(b) shown by the four orange solid
lines implies pulse compression.

As the pulse propagates through the
structure, the intensity-induced nonlinear
grating gradually offsets the existing
linear built-in grating, reaching a O total
grating. The sum of forward- and
backward-propagating intensities  can
give rise to an instantaneous peak
intensity which exceeds that required to
close the grating completely at some time
instances. For a short period of time the
nonlinear grating dominates the index
grating, which creates a slight in-phase
total grating (positive values). Figure
5.12(d) depicts this process in a 500-layer
(180 “m long) device. The front of the
pulse travels approximately at the same
speed as the peak of the pulse. The
trailing edge, however, catches up with
the leading edge, resulting in pulse
compression. The effect resembles the
pushbroom effect described in both [6]
and [7]. Here, however, instead of using
both pump signal and probe beam, only




one strong pulse is used to alter the local
refractive index of the medium - resulting
in a self-induced pushbroom effect.

The compression effects are observed
when the peak pulse intensity /peafc is set
to close completely the grating, i.e. /peafc
= Icl = |n°k|/n2K. If the intensity-induced
nonlinear grating is small compared to the
out-of-phase linear  grating, the
transmittance is expected to be lower due
to reflection by the grating. A pulse (give
by Eq. 4.12) with peak intensity /peafc =
2 GW/cm2 chosen to give a maximum
nonlinear grating of 0.005 (lower than the
out-of-phase linear built-in grating n°k = -
0.01) is simulated. In the case of a higher
input peak intensity /peak, the nonlinear
grating will dominate the grating profile,
resulting in a switching of the sign of the
grating profile. Similar to the /peak = 4
GW/cm2 case, the energy of forward- and
backward- propagating waves will be
stored inside the grating, causing pulse
compression during transmission. Figure
5.13(b) shows the compressed output
pulse simulated when the peak incident
pulse is /peak = 6 GW/cm2 which
provides a maximum induced nonlinear
grating of 0.015 (higher than the out-of-

Figure 5.13: Transmitted pulse (output)
shapes when the intensity of the incident
Gaus—sian pulse is set to: (a) /peafc = 2
GW/cm2 and (b) /peafc = 6 GW/cm2.
The width of the pulse is FWHM = 605 fs
and the device length is fixed to L = 180
m.

Summarizing, envelope compression in
nonlinear optical structures with an out-
of-phase Dbuilt-in linear grating is
observed when the device length does not
exceed twice the input pulse width and
the peak input intensity meets or exceeds
that required to close the grating.




5.6  Summary

This chapter presented the results
obtained from the simulations and
performed a nu-merical analysis to
investigate pulse propagation behavior in
a nonlinear Bragg struc—ture. Three cases
of grating strength (i.e., no built-in
grating, in-phase built-in grat-ing, and
out-of-phase grating) were examined. In
the absence of the linear grating, the
energy transmittance of pulses with small
bandwidth (compared to the bandwidth of
the grating) was independent of pulse
width. The limiting behavior of the
device was pulse-bandwidth-dependent.
The mechanisms behind output pulse
shape formation for long-duration pulses
were distinguished from that for short-
duration pulses. In the pres-ence of the
out-of-phase linear grating, S-curve
transfer characteristics were observed due
to the erasure and reopening of the
stopband. A  compression  effect
reminiscent of the  pump-probe
pushbroom effect for a single pulse was
predicted and a mathematical proof for
pulse compression was also provided.

The temporal analysis of the pulse
propagation presented in this chapter
explored the limiting, logic operations,
and pulse reshaping functions of the
nonlinear Bragg structure. An optical
limiter was demonstrated to limit the
transmitted peak intensity of a 605 fs
pulse to 1.2, 1.6, and 2.8 GW/cm2 for a
290, 180, and 70 “m-long device,
respectively. A 0.01 out-of-phase linear
grating with a length of at least 180 *m
was observed to have an S- and an N-
curve transfer characteristic. A 720 “m-
long device with the same out- of-phase




grating was shown to exhibit significant
pulse compression, compressing a pulse
to 12% of its original pulse width.

6.2  Significance of Work

This work represents the first time-
domain analysis of the temporal response
of a stable periodic structure with
alternating layers of nonlinear materials
with oppositely-signed Kerr coefficients.
Prior to this work there existed no
systematic study of nonlinear solitonic
and non- solitonic pulse behavior in such
stable Bragg structures. As a result of this
work, the questions outlined earlier in
Chapter 2 have been fully addressed and
the answers are summarized here:

. QUESTION: In what ways do the
proposed nonlinear Bragg structure
provide an improvement to optical signal
processing over previously considered
devices?

ANSWER: The proposed nonlinear
Bragg structure is complementary to the
bistable optical switching devices such as
nonlinear Fabry-Perot resonators. The
structure was theoretically predicted to
have the capability of achieving multiple
optical signal processing functions
including limiting (Sections 5.3 and 5.5),
reshaping (Section 5.3), logic operations
(Section 5.5), and pulse compression
(Section 5.5).

. QUESTION: What are the
important design issues in using nonlinear
Bragg struc-tures for practical optical
signal processing?

ANSWER: The device parameters and
pulse properties were chosen according to
the experimental literature for nonlinear
materials properties (Section 4.4.1). The




Kerr coefficients nnl1,2 of the two
adjacent layers were chosen to be nni1,2
= 2.5 x 10-12 cm2/W, and the average
linear index (n01 + n02)/2 was fixed at
1.50. The signal processing functions
listed below used this range of
parameters, as well as specifications for
device length and incident pulse width.
—  Optical limiting may be achieved
through the choice of the number of
layers, peak intensity, and temporal
width. For example, a pulse with FWHM
= 605 fs was found to limit its transmitted
peak intensity to 1.2, 1.6, and 2.8
GW/cm2 for a 800-, 500-, and 180-
layered device (i.e., 290, 180, and 70 ~"m),
respectively.

— An optical logic gate may be
formed using a nonlinear periodic
structure with a linear built-in grating.
For example, a 0.01 out-of-phase linear
grating (i.e., n1,2 = (1.50 ~ 0.01) £ 2.5 X
10-12lin) with a device length of at least
180 “m was shown to have S- and N-
curve transfer characteristics. It had
previously proven that such transfer
characteristics allow a complete set of
logic operations.

— A pulse compressor may be
designed by proper choice of the number
of de-wvice layers and peak intensity. For
example, a 720 “m-long device exhibited
significant pulse compression,
compressing a pulse down to 12% of its
original width.

. QUESTION: How does the time-
dependent (pulse-processing) behavior
relate  to the known steady-state
responses?




ANSWER: The limiting behavior and the
S-curve transfer character are present in
both the time-dependent and the steady-
state response. The erasure and reopening
of the stopband were shown to be
responsible for these characteristics.
However, in contradistinction with the
steady-state average power results, the
time-domain transmitted energy is not
asymptotically limited. Temporal pulse
compression makes the device attractive
for signal processing. Section 5.5.2
investigated this special effect.

. QUESTION: What differentiates
solitonic from non-solitonic propagation?
ANSWER: A Bragg soliton propagates
through a periodic structure in two
coupled counter-propagating waves that
maintain their shape; while a non-
solitonic pulse propagates as a forward
wave, then generates a reflected
backward wave, and hence displays
variations in pulse shape. In general, the
strict requirements on peak power, initial
pulse shape, and pulse duration needed to
balance precisely the effects of dispersion
and nonlinearity for producing a soliton
may be difficult to satisfy. According to
Chapters 3 and 4, the Bragg soliton that
was induced in the structure (with ni,2 =
(1.50 ~ 0.01) £ 25 x 10_12/in) was
required to have a peak intensity of 55
GW/cm2 and a narrow pulse width of ~27
fs. The Gaussian pulse used for the
equivalent structure took a much lower
peak intensity of 4 GW/cm2 and a much
wider pulse width of ~605 fs.

Appendix A




Non-iterative Algorithm for Solving the
CME System

The real functions u, v, w, and y satisfy
the coupled system in Eq. (4.2) are:

We use Crank-Nicholson finite difference
method to solve the above partial
differential equations. In Eqg. (4.6), the
derivatives of the functions u, v, w, and y
are approximated. For example,

The element ua represents the value of
the function u at the grid point (Z = aAz,
T = PAt). This numerical method is
known to be unconditionally stable for
any values of At, Az, and n°k [11].

The nonlinear function /a(w,w,v,y) is
defined by

The system (A.4) can be used to evaluate
functions of Ug, w”, v*, and whena =1,
2,..., Nand 3 =1, 2,... ,K. The boundary
values , w°, v°, y°, «N+1, +1, +1, and
yN+1 are considered separately. The
boundary conditions in Eq. (4.8) state
The three-point forward difference
method is used for solving u, w, v, and y
at the boundary Z=0and z = L.

We thus obtain a non-iterative algorithm
for solving the functions at a specific time
instance:

where

And the matrices Ha(u, w, wv\y),
Hg(w,u,y, v), H*(v,y,u, w), and Hg(y, v,
w,u) are ex—pressed as follows:

The linear system described in Eq. (A.14)
Is implemented to calculate the values of
u, v, w, y at the time instance At.







