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Finite Size Effect of Nanoparticles to
the  Atomic Pair  Distribution
Functions 19 h 53 13/7

The finite size effects of the
nanoparticles to the atomic pair
distribution functions (PDF) are
discussed by calculating the radial
distribution  functions (RDF) on
nanoparticles with various shapes,
such as sheet, belt, rod, tube and
sphere, assuming continua. Their
characteristics are shown depending
on the shapes and the sizes of the
nanoparticles.  Alternately, these
PDFs can be used to measure the
shapes and the sizes of ordered
lattice part inside of any materials
such as nanoparticles and bulks.
1.Introduction

Many types of nanoparticles have
been synthesized, and studied on
their  physical and  chemical
properties. The nanoparticles may
exhibit the exotic physical properties,
which can be different from those of
the bulk materials due to their finite
sizes. The studies on the atomic-
scale structures of the nanoparticles
give us information to understand
their properties. However, it is hard
to determine their structures by
ordinary techniques used for the bulk
materials, for example, traditional

Su Anh Huéng cua Kich Thudc Hitu Han cua Céac Hat
Nano dén cac Ham Phan B6 Cip Nguyén Tu
Ham phan bé cip (PDF): ham md ta phan b khoang cach
giita cac cap hat trong mot thé tich nhat dinh.

Tur “hiru han” dich tir chit “Finite” trong ban gc. Nhu
chung ta da biét, kich thudc cua hat nano tir vai nano mét
dén vai chuc nano mét, con kich thudc cua vat lieu khi
khoang vai cm, rd rang cm Ién gap hang chuc triéu nano
mét nén ching ta c6 thé noi: so vai mot hat nano, vat lidu
khdi c6 kich thuéc 16n vo clng (vo han) va hat nano ¢ kich
thuéc hitu han (vai nano dén vai chuc nano). Vi vay, tac gia
ciia ban gbc cling nhu em cam thay tr “Finite” ndy co
nghia va khong lugc bo no.

Chdng t6i nghién ctru anh huong cua kich thudc hiru han
ctia cac hat nano dén ham phan bb ciap nguyén ta (PDF)
bang céach tinh ham phan b6 xuyén tam (RDF) trén cac hat
nano hinh dang khac nhau, chang han nhu tam, dai, thanh,
dng va hinh cau, gia sir moi truong lién tuc. Ching ta s&
thiy dic diém cua cac ham nay phu thudc vao hinh dang va
kich thudc cua cac hat nano. Bén canh d6, ching ta co thé
st dung cac PDF dé do hinh dang va kich thuéc cta phan
mang tinh thé cd trat ty bén trong bat ky vat liéu nao chang
han nhu cac hat nano va vat liéu khdi.
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Rietveld analysis. In the case of the
nanoparticles, the  well-defined
Bragg peaks are not observed and the
diffraction data mainly consist of the
diffuse scattering, because the
periodicity of their unit cells is
limited to nanoscale.

The technique of the atomic pair
distribution function (PDF) can be
applicable to the determination of the
local structure of the nanoparticles.
For the system composed of one kind
of atom, the number of pair-atoms in
a shell of thickness dr at distance r
from another one are obtained as
R(ndr, where R(r) is the radial
distribution function (RDF). R(r) is
related to the reduced pair
distribution function G(r) via the pair
distribution function g(r) as follows
(Egami & Billinge, 2003).

where pO is a number density of
atoms in the sample. Experimentally,
G(r) can be obtained from the total
scattering structure function S(Q) via
Fourier transformation as follows.

where Q is the magnitude of the
wave vector. In the cases of
amorphous  materials and the
nanoparticles, even if S(Q) does not
have any well-difined peak as
mentioned above, G(r) can have
sharp peaks, at least, in the small r-
region. Then the PDF analysis is
applicable to the structural analysis
of the materials whose structures
have short range correlation.
Recently, the technique of PDF has
been applied for the determination of
the structure of nanoparticles
(Gilbert et al., 2004, Petkov et al.,

g(r) = R(r)/4mr’ po, (1)
G(r) = 4mrpolg(r) — 1], (2)

2
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2004, Gateshki et al., 2004,
McKenzie et al., 1992).

So far, the effect of the shape and
finite size of a nanoparticle,
however, has not been considered in
the PDF analysis. The atomic
correlation remains only in the size,
and as a result, G(r) does not have
any peak in the larger r-region than
the particle- size if there is no
correlation between near-by
particles. Actually, G(r) of C60 has
sharp peaks at r smaller than the
diameter of C60 molecule while at r
larger than the diameter, G(r) has
only small broad peaks
corresponding with the correlation
between the molecules (Egami &
Billinge, 2003). Furthermore, the
intensity of the PDF must be reduced
from that of the bulk sample with
infinite size, due to the finite size
even at r smaller than the particle
size. So the distribution functions
modified by their sizes and shapes
need to be used for the detailed
structural analyses of nanoparticles.
Such  analysis gives  another
structural  information of  the
nanoparticle. The nanoparticle of the
zinc sulfide is analyzed by PDF with
the spherical shape effect (Gilbert et
al., 2004). After they determined the
averaged size and the shape of the
nanoparticle by means of small angle
X-ray scattering and ultraviolet-
visible absorption spectroscopy, they
discussed the disorder and the strain
in the nanoparticle from the
difference between the averaged size
and the local correlation size by
PDF. The corrections of the averaged
size are crucial to discuss the local
lattice disorder in the nanoparticle.




In this paper, we calculate the RDFs
of the wvarious nanoparticles by
assuming that they are continua, for
the corrections of the averaged size
and the shape effect, and the
correction factor to the RDFs and
reduced PDFs for the various
nanoparticles are obtained. By using
the correction factor, the corrected
formulation of the PDF analysis on
nanoparticles are presented. Based
on our calculations, the method to
estimate the sizes of the parts with
ordered and disordered lattice in the
particle, is also proposed.

2. Calculations

In the calculation of the radial
distribution function R(r) of a
nanoparticle, we consider the atomic
pair distribution only in the particle,
and assume that the atomic density is
zero (vacuum) outside of the particle.
The total atomic density in the
nanoparticle is p'0. The RDF of the
three dimensional continuum with
infinite size is given as Rx(r) =
4nr2p0, as mentioned in the next
section. So the RDF of the
nanoparticle, Rnano(r), is modified
by the correction factor f (r) which is
defined as,

When r 2 0, f (r) must be unity, and
when r is larger than the size of the
nanoparticle or r ~ to, f (r) becomes
zero. This factor can be regarded as a
kind of particle form factor instead
of a well-known atomic form factor.
In the real analysis, the pair
distribution between the particles
must be considered. The formulation
including the pair distribution
beween particles will be discussed in
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84.

3. Calculated Results

3.1. Simple Case

In this subsection, we take up simple
cases and discuss the effect of the
dimensionality of particles to the
radial distribution function. First, we
consider the wire with an
infinitesimal thickness shown in Fig.
1(a).

Figure 1

Schematic diagram of (a) 1D, (b) 2D,
(c) 3D particles, and (d) a nanobelt.

The density in this wire is defined as
p0 sion is an inverse of the length.
Here we assume that r is much
smaller than the length of the wire L.
The number of atoms in an length dr
at the distance r from the atom at
origin (O), is 2P0, 1Ddr, as shown in
the figure. Then the radial
distribution function is obtained as,
In the case of the sheet with an
infinitesimal thickness shown in Fig.
1(b), if r << L, atoms paired with the
one at origin O, are in the ring with a
radius r and a thickness dr which is
shown by the bold line in Fig. 1(b).
So R2D(r) is given by,

In the case of the three dimensional
block shown in Fig. 1(c), paired
atoms are in the spherical shell with
a radius r and the thickness dr, and
R3D(r) is given by,

R3D (r) = 4nr2p0;

In the cases of one, two and three
dimensional nanoparticles, RDF
functions have the r-dependences of
r-constant, r-linear and r-square,
respectively.

Next, we calculate the RDF of the
nanobelt with the width of a and an
infinitesimal thickness which is

Rp(r) zf’f]_w_}- (3)
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shown in Fig. 1(d), as an example of
the typical nanoparticle. Here, it is
assumed that r C L. In this case, we
consider the number of atoms in an
annulus of thickness dr at a distance r
from another one at a position P
which is distant from the edge of the
belt by p, as shown in the figure. It is
given by R(r, p)dr. So R(r, p) can be
regarded as the “partial radial
distribution function” (PRDF) at p.
R(r) is given by JOR(r, p)dp/a. If r <
a/2, R(r, p) is proportional to the
length of the circumference for r < p
<a—r, and it is proportional to the
length of the arcs with interior angles
of 2n — 20 for p <r, and 2n — 29’
fora—r <p<a, where 6 = cos-1 £
and O' = cos-

In the case thata/2 <r<a, R (r, p) is
proportional to the length of the arcs
with interior angles of 2n — 20 for p
<a—rand2n—20"forr<p<a.
At the other p, R(r, p) is proportional
to the length of the bold line shown
in Fig. 1(d). Then

Since for r > a, R(r, p) is obtained by
the bold line for all p,

By calculating the above
integrations, we obtain the RDF of
the nanobelt as follows.
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When r is much smaller than a,
R2Dbelt ~ 2nrp'0 2D, which is equal
to RDr). For r > a, R2Dbeit ~ 2ap0
2D, equal to Rw(r). The calculated
R(r) of the nanobelt is shown in Fig.
2.

Figure 2

The radial distribution functions of
the wire (1D), the sheet (2D) and the
nanobelt.

Here, we use parameters of p02D =
1. The RDFs of the wire and the
sheet are also plotted in the figure,
assuming same atomic densities. For
r ~ 0, the RDF of the nanobelt
approach the RDF of the 2D sheet,
and for r ~ a, they merge into that of
the wire. We know the effect of the
dimensionality to the RDF by such
simple calculations.

3.2. Nanosheet

From this subsection, we consider
the realistic model. First, we take up
the nanosheet with a thickness of t as
shown in Fig.3

Figure 3

(@) Three dimensional scheme of the
nanosheet with a thickness t. (b) The
sectioned diagram of the nanosheet.
The area is L x L and it is assumed
that r C L. The atomic density in the
sheet is p'0O 3D. Here, we also
consider the PRDF at p, R(rp),
where p is a distance between the
center of the sphere with a radius r
and the bottom wall of the sheet, as
shown in Fig. 3(b). R(r, p) is
obtained as product of p0 3D and the
volume of the overlapping part of the
sheet and the spherical shell with a
radius r and a thickness dr, shown by
the bold line in the figure. Rsheet(r)
Is given by *R(r, p)dp/t. In the case
of r < t/2, R(r, p) is given as the




number of atoms in the complete
spherical shell forr<p <t-r. R(r, p)
Is proportional to the surface area of
the object obtained by rotating the
fan with a interior angle 6 and 6' for
p<randt-r<p<t, respectively,
where

In the case of t/2 < r < t, R(r, p) =
2nr2(1 + p/r)p’0 3D for p <t — 1,
andR(r,p) = 2nr2(l + t")p[)}3D for r
<p<tFort-r<p<r R(r,p)is
given as a product of p0 3D and the
surface area of the object obtained by
rotating the bold line shown in Fig.
3(b). Fort/2 <r<t,

Since in the case of r > t, R(r, p) =
2nrt for all p,
2nrtdpp'0 3D/te

By calculating the above
integrations, we get the RDF of the
nanosheet as follows.

Figure 4

(@) The radial distribution function
and (b) the correctionfactor of the
nanosheet with thicknessest

Figure 4(a) shows the RDF
calculated on the nanosheet. In the
calculations, the atomic density in
the nanosheet p0O 3D is unity. Forr C
t, the RDFs are proportional to r2.
This r- dependence corresponds with
the case of three dimensional particle
mentioned in 82. For r > t, Rsheet(r)
<x r, corresponding with R2D(r).
The correction factor fsheet (r) which
is defined by eq. (4) is shown in Fig.
4(b). At r = 0, f (r) is unity, and it
linearly decreases with r in the

f =cos™' £and @' = cos~' =£. Then, for » < 1/2,
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region0 <r<t.

3.3. Nanobelt

Next, we consider the case of the
nanobelt with a width a and a
thickness t, as shown in Fig. 5.
Figure 5

(@) Three dimensional scheme of
nanobelt with width a and thickness
t. (b) The sectioned diagram of the
nanobelt. (c) The diagram viewed
along x-direction.

The length of the belt L is much
larger than r. Figure 5(b) shows a
sectioned diagram of the belt. The
center of the circle (P) in the figure is
distant by p from the left wall and by
q from the bottom wall. The PRDF at
(p, ), R(r, p, ), is proportional to
the surface area of the part of the
sphere which cross the belt. The
surface area of the object obtained by
rotating by oix) around x axis with
the radius v(x) is obtained by S = f
Ay(x)d(j)ds, where ds = \Jdx2 + dv2.
Since in the case of sphere, v = %/r2
- X2, S = f r<f>{x)dx. Here, we
calculate R(r, p, q) by separating six
parts as shown in Fig. 5(b). The
surface area of L2 is obtained by the
rotation from zero to $\ (x) and from
n - (X) to n, and the area of R2 is
obtained by the rotation from zero to
A2 (X) and from n - A2 (X) to n, as
shown in Fig. 5(c). The surface areas
of the other parts are obtained by the
rotation of n. ThenR(r, p, q) is given
by

The direction ofx-axis is shown in
Fig. 5(b), and the origin ofx-axis
corresponds with the center of the
sphere.¢1

are given by the relations,

R(r. p.q) pf]_m{/ mrdx 4 / 2¢0 (x)rdx 4 / Trdx
Jr Ji2 J13

I/m‘dx} / 2¢05 (x)rdx + / mu’xl. (10)
JR JR2 Jr3




as shown in Fig. 5(c). The integral
ranges in eg. (10) depend on the
relations between r, t, a, p and g. The
integral ranges of the left side (L1,
L2 and L3) for various conditions of
the above parameters are shown in
Tabel 1.

Table 1

Integral ranges of the left side (L1,
L2 and L3) for various conditions of
the relations betweenr, t, a, p and q.
conditions

For R1, R2 and RS3, the integral
ranges are obtained by substituting a
— p for p in the table. The case
shown in Fig. 5(b) corresponds with
the condition of r > p. \Jr2 — p2 < q
<randt —r<qg<t—\r2-p2
Because the integrations for the
range L2 and R2 can not be
calculated analytically, they are
obtained by  the numerical
calculations. Rbeit (r) is given by,
The RDFs calculated for the
nanobelts with various thickness t
axis corresponds with the center of
the sphere. (x) and *2 (x) are shown
in Fig. 6(a).

Figure 6

(@) The radial distribution functions
and (b) the correction factors of the
nanobelts with various t .

For r > a, t, Rbelt (r) become flat and
they are proportional to atp0,3D,
corresponding with  Rw(r). The
correction factors obtained by eq. (4)
are shown in Fig. 6(b). At r ~ 0,
fbeit(r) for t = a and t = a/2 are
slighty larger than unity, due to the

d1(x) = sin—

¢a(x) = sin™!

rp,q)dgdpl(ta).




insufficiency of the accuracy of the
numerical calculation.
3.4. Nanorod and Nanotube

In this subsection, first, we consider
the nanorod as shown in Fig. 7(a).
Figure 7

(@) Nanorod with radius a. (b) The
sectioned diagram of the nanorod
whose center is located on A. (¢c) The
diagram viewed along x-direction.
We also assume that r C L. Figure
7(b) shows a sectioned diagram. We
consider the surface area of the
overlapping part of the sphere with a
radius r and the rod with a radius a.
The center of the sphere is distant
from the center of the rod by distance
PA=p. The PRDF at p, R(r, p) is
proportional to the surface area. It is
similar to the cases of the nanosheet
and the nanobelt. R(r, p) is obtained
as

where 0(X) is given by

as shown in Fig. 7(c). The integral
ranges 11 and 12 depend on the
relation between the parameters, a, r
and p. First, the case of r < a is
considered. In this case, when p - a <
-r, the sphere is perfectly enveloped
in the rod. If p - a > -r, the integral
ranges on X are obtained as, I1:p - a
< x<rcos aand I2:rcosa < x <,
where cos a = p +I'pi7a ¢ Theni?(r,/?)
IS given for r < a,

R(r. p) [ [ 4¢(x)rdx / zm-dx] Poa-
J JI2




Since the RDF is given by JMR(r,
p)2npdp/na2, Rrod(r) is obtained
from the above equations as

The integration on x must be
obtained by  the numerical
calculation.

In the case that r > a, R(r, p) can be
given by the second formula in eq.
(11) whenp+a>r. Whenp+a<r,
the circle with a radius a which
corresponds with a section of the rod,
is completely enveloped by the circle
with a radius r. Then R(r, p) is given

by

As the results, for r > a, Rrod is
obtained as
....(14)

The integrations on x included in the
first and the third terms are
calculated numerically.

Next, we consider the nanotube
shown in Fig. 8.
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Figure 8

(@) Nanotube with an external
diameter 2a and an internal diameter
2b. (b) Sectioned diagram of the
nanotube.

An external diameter and an internal
diameter are 2a and 2b, respectively.
In the calculation, we consider the
PRDFs at p for the nanorods with
radii a and b, Ra(r, p) and Rb(r, p),
where p is a distance between the
center of the tube and the sphere with
a radius r. The RDF of the nanotube
is given by using Ra(r, p) andRb(r,
p), as follows.

Rtube(r) = [ [Ra(r, p) - Rb(r, p)]
2npdp/n(a2 - b(15)

bRa(r, p) can be calculated by same
way as the case of the rod. Rb (r, p)
can be given for the conditions of the
parameters,

By using the above equations, we
calculate the RDFs of the nanorod
and the nanotubes, as shown in Fig.
9(a).

Figure 9

(@) The radial distribution functions
and (b) the correction factors ofthe
nanorod and the nanotubes with
various t .

In these figures, a thickness t = a - b.
The atomic densities in the rod and
the tube, p3D are unity. At r > a, t,
the RDFs have constant values which
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correspond with the a product of the
sectioned area and the atomic
density. It is same as the case of the
nanobelt. Rtube(r) with a thin
thickness have sharp peaks at r ~ 2a.
The correction factors ftube(r) are
shown in Fig. 9(b). The correction
factor of the tube decreases with r,
and has a shoulder at r ~ 2a -1.

3.5. Sphere

In this subsection, the RDFs for the
sphere and the spherical shell are
calculated. Fisrt, the filled sphere
with a radius a as shown in Fig. 10(a)
Is considered.

Figure 10

Sectioned diagram of (a) filled
sphere and (b) spherical shell with
external and internal radii a and b,
respectively.

In this case, we also consider R(r, p)
where p is a length PA shown in Fig.
10. In the case of r < a, it can be
obtained as

In the case of a <r < 23,

For r > 2a, R(r, p) = 0. The RDF can
be given by

Ry(r, p)
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The above integrations of eqgs. (17)
and (18) give same results. Then

....... (20)
R(r,p) 45'1'"2?:]_3!_} (p=a-—r)
R(r p) ,ﬁf]_”_}/ 2mrdx
It is consistent with the result Jreosa o
obtained by Mason.(1968) 217 0 11 (l p~+r "*;) (p>a—7)
In the case of the spherical shell with o 2pr N
a thickness t = a - b shown in Fig. (17)

10(b), we consider the PRDF at p for T

the filled spheres with radii a and b, -
Ra(r,p) and Rb(r,p), respectively, and | [R(»P) =0 (p=r—a)

the RDF can be given by R p) = phan / 5 rrdc

Ra(r, p) corresponds with eqgs. ’ , P4t — &
(17)and(18). Rb(r, p) is obtained as 2p0 3pTF" (l T) (p

.................... (18)

J[]’ R(r, pamp*dp

(19)
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By using egs. (17), (18), (21) and
(22), the RDFs for the spherical
shells with various t are calculated
by using p0 3D =1, as shown in Fig.
11(a). The correction factors are
shown in Fig. 11(c).

4. Discussions

In this section, we present the
formulation of the PDF analysis
which takes account of the finite size
effect of the nanoparticle. In the
previous section, we neglect the
atomic pair distribution between the | [Resphere(r) = = @) 1)
particles, however it must be ’
considered in the real analysis. Here,
we consider the partial raidal —
distribution function including the

atomic pair distributions inside of a
particle and between the particles. It
IS assumed that the measured
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nanoparticles are in a vacuum (there
IS not any scatterer or atom outside
of particles). Because in the real
case, each particle is usually
distributed randomly and there may
be no atomic correlation between
particles, the atomic distribution
outside of the particle can be
regarded as being continuous with a
density of pO which corresponds with
the density averaged in the whole
sample including all particles. The
atomic  arrangement inside of
particles is periodic with a density of
p'0. Here we rewrite the radial
distribution and the partial radial
distribution functions obtained for
the single particle made of atoms as
Rnano(r) and Rnano(r, p) (or
Rnano(r, p, q)), respectively. Then
the partial radial distribution function
R(r, p) (or R(r, p, q)) are given as
follows.

R(r, p) = Rnano(r, p) + [4nr2 -
Snano(r, p)] p0

where Snano(r,p) shows a surface
area that the sphere with a radius r
centered at P has inside of the
particle. In the above equation, the
first term shows the pair distribution
inside of the particle and the second
term shows the pair distribution of
outside of the particle (the pair
distribution between the particles). If
the nanoparticle consists of continua,
Rnano(r, p)/p0 becomes equal to
Snano(r, p). Then the radial
distribution function is given by

R(r) = Rnano(r) + [4nr2 - Snano(r)]
pOo,

where Snano(r) is the surface area
inside of the particle averaged by p.
In the previous section, we know that
Anr2f (r) is substituted for Snano (r).

Rpy(r,p)=0 (p<r—b)

R p* 4+t = b
Ry(r, p) 23"""'7):].31}(1 2 pr )

(r—b<p<r+b)
Ry(r,p)=0 (p=r+b) (22)
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Then the RDF can be represented as
R(r) = f(NR<x> (r) + 4nr2p0 [1 -
f(r], (23)

where RTO (r) is RDF of the bulk
sample with infinite size. Here we
use the relation

f (r) = Rnano(r)/R"\(r),

for the first term. For the bulk
sample, the PDF and the reduced
PDF are given by

g™(r) = R<x,(r )/4nr2 p0

G™(r) = 4nrp'D[g"() - 1], (24)

where gTO (r) and GTO (r) are the
PDF and the reduced PDF of the
bulk sample. From egs. (1), (2), (23)
and (24), the PDF and the reduced
PDF are represented as

o{r) = —f{rgoo{r) + 1 -Hr), (25)
pO

G(r) = f(nGx(r) + 4nr(p0 - pO)f(r)e
(26)

The RDF, the PDF and the reduced
PDF of the nanoparticle are obtained
from those of the bulk sample
modified by f (r) and the ratio of
p0/p0. The above g(r) and G(r)
satisfy the normalization relations of
g(r) ™ 1 and G(r) * 0 in the limit of r
A X because f (r) ~ 0 for r * x. Then
the egs. (23), (25) and (26) are valid,
and they can be applied to the PDF
analysis on nanoparticles.

In eq. (26), the second term is
independent of the arrangement of
the atoms included in the
nanoparticle, and it depends only on
the shape and the size of the
nanoparticle (and the densities),
while the first term depends on both
the atomic arrangement in the
nanoparticle, and the shape and the

Rl["} Rmm“[!‘} t [‘4'}1-"‘2 *Sfm.'nu["‘}] 0,

S(r)Roo (r) + 4mripo [1 — f(r)],

Ryano {"}R e [ "‘} 1

Roo (r)/4mr? Il
drrpylgse (r) — 1],

goo(r)

Goo(7) (24)




size of the nanoparticle. As a result,
in the general case, we can expect
that the peak structure due to the
atomic arrangement given by the first
term is on the ”back ground” due to
the shape of the nanoparticle given
by the second term which can be
easily calculated by using f (r). From
eq. (26), the "back ground” is larger
for smaller p0O. Then the detailed
experiment  on the diluted
nanoparticle can confirm the above
expectations.

Here, we discuss the difference
between the PDF analysis and the
small angle scattering. Generally, the
shape and the size of the
nanoparticles are determined by the
small angle scattering, and the
scattering functions for the particles
with various shapes have been
calculated. However, since in the
small angle scattering measurement,
the wave vector is much smaller than
the inverse of the atomic scale and
the particle can be regarded as a
continuum, the scattering profile
depends on the shape and the size of
the particle and is independent of the
atomic arrangement. It indicates that
the small angle scattering can not
distinguish the local disordered (bién
dang, léch mang, khéng co trat tu)
lattice from the ordered lattice,
although, generally, they coexist in
the nanoparticle. On the other hand,
the PDF analysis can distinguish the
local disordered lattice from the
ordered lattice, because the functions
of the PDF analysis depend on the
atomic  arrangement and the
coherence. Then the PDF analysis
can discuss the local lattice disorder
in the nanoparticle by considering

g(r) = L2 f(r)goo(r) + 1
0

G(r) = flr)Gao(r) 4 4:rrr[p:]

fr),
po) f(r).




the finite size effect of the
nanoparticle. Gilbert et al. (2004)
have shown that the PDF profile of
the zinc sulfide nanoparticle
decreases with r more rapidly than
the profile expected from the shape
and the size of the particle. They
pointed out that such reduction of the
PDF profile is due to the local
structural disorder driven by the
strain in the particle and estimate the
distance in which the structural
coherence  remains, from the
reduction of the PDF profile. They
speculate that such strain is caused
by the irregular surface.

Here, we can present a method to
estimate the sizes of the domains
with the ordered and the disordered
lattice in nanoparticles, based on the
present calculations. In the PDF
analysis, the atomic density in the
disordered part becomes nearly a
continuum. For the continuum, GTO
(r) is zero, which can be obtained
from the relation Rx(r) = 4nr2p'0,
andeq. (24). Then the reduced PDF
of continuum with nano-size is given
by the smooth curve which
corresponds with the second term of
eg. (26). The reduced PDF of the part
with the structural coherence shows
sharp peaks corresponding to the
atomic arrangement. Let's consider a
spherical  nanoparticle  with a
disordered surface, as a simple
example. In this case, we consider
two part : the sphere with a periodic
atomic arrangement which has a
diameter smaller than that of the
particle, and the spherical shell of a
continuum as shown in Fig. 10(b).
The reduced PDF of the former are
represented by modifying the




functions of the bulk sample by
using eg. (26). G(r) of the latter is
given by the second term of eq. (26),
obtained by wusing f (r) of the
spherical shell with a corresponding
size. We may calculate a sum of the
two kinds of the reduced PDFs and
fit it to the observed data by
adjusting the thickness of the
disordered surface, and as a result,
we can estimate thickness of the
disordered surface. By using our
calculations, the information on the
local inhomogen- ity in nanoparticles
may be detected quantitatively.

5. Conclusion

The functions of the PDF analysis
calculated for the various
nanoparticles strongly depend on
their shapes and sizes. The exact
equations of the PDF analysis on the
nanoparticle are presented, by
considering the correction factor f (r)
and the ratio between the density in
the particle and the total density
averaged in the sample. The analysis
which takes account of the finite size
effect also enables us to estimate the
sizes of the local disordered lattice
and the ordered lattice included in
the nanoparticle.

The finite size effect on the PDF is
remarkable in the large r-region
where the accurate experimental data
Is hard to be obtained. The detailed
analysis is enabled by a
diffractometer with both of high
resolution and high intensity, which
can be installed only in intense pulse
neutron or intense synchrotron
radiation source facilities.









