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Spanning cubic graph designs

Graph designs are natural extensions
of BIBDs (balanced incomplete
block designs). In this paper we
explore  spanning cubic  graph
designs and develop tools for
constructing some of them. We show
that K16 can be decomposed into
each of the 4060 connected cubic
graphs of order 16, and into precisely
144 of the 147 disconnected cubic
graphs of order 16. We also identify
some infinite families of cubic
graphs of order 6n + 4 that
decompose K6n+4.

1. Introduction

We say that a graph G decomposes
the complete graph Kn if the edges
of Kn can be covered by edge-
disjoint copies of G. Such a covering
Is then called a decomposition of Kn
into (copies) of G. This notion was
first introduced by Hell and Rosa [9],
and is a natural extension of BIBDs
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(balanced incomplete block designs)
in  which  blocks  (complete
subgraphs) are replaced by another
graph G. Following BIBD notation,
we use the triple (n, G, 1) to indicate
that the graph G decomposes Kn .If
G has n vertices we call (n, G, 1) a
spanning graph design.

In this note we shall limit our
discussion to spanning
decompositions of Kn. The oldest
spanning decomposition is probably
Kirkman’s [14] proof that all 1-
reqular graphs of order 2n
decompose K2n. This topic is still
popular today; see for example the
survey paper [17] and the book [25].

The  well-known  Oberwolfach
problem deals with decomposing Kn
into a spanning 2-regular graph. It
has only been solved for sporadic
families of graphs [4,6,10,11]. When
the 2-regular graph is required to be
connected, i.e., Hamilton cycles, then
the obvious arithmetic conditions,
that is n divides the number of edges
of Kn, and n is odd, are also
sufficient. This  follows from
Walecki’s famous decomposition of
K2k+1 into k Hamilton cycles, as
described by Lucas [15].

Decompositions of Kn into spanning




cubic (3-regular) graphs have been
considered in [3,24]. Interestingly, it
is well known that the Petersen graph
does not decompose K10 [8,23].
Consequently, most of the research
concentrated on decompositions of
small complete graphs into cubic
graphs. Imrich [12] proved that there
are only 21 distinct cubic graphs of
order 10. Adams, Bryant and
Khodkar [2] proved that fifteen of
the 21 graphs decompose K10 while
the other six do not. Khosrovshahi et
al. [13] extended this work by an
extensive computer search and
produced a table of all possible

Fig. 1. A class of planar Hamiltonian
cubic graphs G6n+4.

Fig. 2. The six cubic graphs of order
10 that do not decompose K10.
decompositions of K10 into three
(not necessarily isomorphic) cubic
graphs. For each triple of cubic
graphs G1, G2, G3 they also
included a count of how many non-
iIsomorphic decompositions of K10
into G1, G2, G3 exist. Similar results
for K10 were also obtained by
Petrenjuk [18,19].
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Ringel’s conjecture that every tree of
order n + 1 decomposes K2n+1 [20]
Is probably the most famous open
graph design problem. Kotzig called
it the Graph Disease. Various
labelings are powerful tools to tackle
such decompositions. They were
introduced by Rosa in [21]. His ft-
valuations were later renamed
graceful labelings.

In this note we concentrate on cubic
decompositions of complete graphs
and try to extend the results
mentioned above to cubic graphs of
arbitrary size. Clearly, if a cubic
graph G forms a spanning graph
design (k, G, 1) then k = 6n + 4 for
some n > 1. (The case n = 0 is
trivial.) So our initial question was
whether for each n > 1 there are
cubic graphs G of order 6n + 4 that
decompose K6n+4. One obvious
approach was to use cyclic 1-
factorizations. For each positive
integer n this quickly led to cubic
graphs of order 6n + 4 that
decompose K6n+4. Then we decided
to look for cubic graphs that do not
decompose K6n+4. Using computer
search we found that all but three
cubic graphs of order 16, and all
those we considered of orders 22 and
28, decomposed the corresponding
complete graph. This suggests that
spanning cubic graphs that do not




decompose Kén+4 are rare.

2. Spanning cubic graph designs

In this section we develop tools to
construct spanning cubic graph
designs.

As noted in [3], using well-known 1-
factorizations of K2m, m = 3n+2, it
Is easy to construct examples of
cubic graphs that decompose K6n+4.

For instance, the planar, Hamiltonian
cubic graph in Fig. 1 is obtained
from the well-known 1-factorization
GK2m (see [17]) defined by:

. MO = {(to, 0), (1, 2m — 2),...,
i, 2m—i—1),..,(m—1, m}

. Mk ={(i+k j+Kk)|(]e
MO}, k = 1,..., 2m — 2, with all
arithmetic done mod (2m — 1), and
to + k = to.

In what follows, we use a labeling
scheme that turns out to be very
powerful in finding many graphs that
decompose K6én+4. We discuss two
approaches: Breadth first search
(BFS) and Depth first search (DFS).
In BFS we search all cubic graphs of
a fixed order. In DFS we search




infinitely long sequences of cubic
graphs of the same *‘type’’.

2.1. The cubic labeling, BFS

Our first attempt was to search for
some ‘‘obvious’” cubic graphs of
order 16 that fail to decompose
K16.To do so, we can start with the
six cubic graphs of order 10 that fail
to decompose K10, c.f [2], (see Fig.
2): Two of the graphs (G2 and G3)
are bipartite and their union has
chromatic number <8. The graph G1
is the Petersen graph, which fails to
decompose K10 for many reasons.
The graph G6 contains K4 but its
independence number is 3. The
argument that the remaining two
graphs fail to decompose K10 relies
on the fact that we are trying to
decompose a complete graph into
three subgraphs.

First we tried to extend the six cubic
graphs that failed to decompose K10
to cubic graphs of order 16. The first
few graphs we checked included
natural generalizations of these
graphs and also a cubic graph of
chromatic index 4; see Fig. 3(a),
Figs. 4 and 5.




For each graph G, a decomposition
of K16 was found with a similar
structure. Let the vertices of K16 be
labeled by {to} U A0 U Al U A2
where Ai = {0i,..., 4i}. In each case,
a cyclic starter graph GO was found,
with GO = G. The other four disjoint
iIsomorphic copies Gj were obtained
by the simple mapping <fij(xk) = (x
+ j mod 5)k for je {1, 2, 3, 4} and k
e {0, 1, 2}, and jTO) = to. The
graphs Gj, 0 < j < 4, together
decomposed K16 because the labels
on GO were chosen such that:

. For each 0 < i < 2, to was
connected to exactly one vertex in
Al, and there were exactly two edges
between vertices spanned by each
Al

Fig. 3. Index 4 cubic graph G1 with a
cubic labeling (left), and its standard
form cubic labeling (right).

.............................................

...................

Fig. 4. The graph DG16 and its
computer generated labeling.

.............................................

Fig. 5. Generalized Petersengraphs.
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. Exactly one of these edges has
length in {1, 4} (mod 5), and the
length of the other edge is in {2, 3}
(mod 5).

. Between Ai and Aj, j > i there
were exactly 5 edges (xi, yj) such
that {(y — x)} (mod 5) = {0,1, 2, 3,
4%},

. GO is a cubic graph.

This implied that not only did each
of these graphs decompose K16
cyclically, but in each case there was
a decomposition in which one vertex
remained fixed. A computational
search verified that all
decompositions of the fifteen cubic
graphs of order 10 also had a fixed
point. This led to the following
question:

Is it true that all cubic graphs of
order 6n + 4, n > 2, decompose
K6n+4 cyclically?

It turned out that the answer is
negative, even though it is almost
always true for n = 2: only twelve of
the 4207 cubic graphs of order 16 do
not decompose K16 cyclically. All of
these are disconnected graphs. Hence
we ask:

Is it true that all connected cubic
graphs of order 6n + 4, n > 2,
decompose Kén+4 cyclically?

Among the graphs tested, and for
which  there exists a cyclic




decomposition of K16, are G1,
shown in Fig. 3, the generalized
Petersen graphs shown in Fig. 5, K4
+ 2PS3 (the symbol + represents
graph union) and PS3 is the 3-prism,
and DG16 shown in

Fig. 6. The graph G8.

Fig. 4. A closer study of these
decompositions revealed that within
each Ai we may shift the labels of
the vertices by a fixed amount
without affecting the decomposition.
This led us to the following standard
form cubic labeling:

(i)  LetAi={0i,., 2n)i},i=0,1,
2.

(i) Let V(GO) = {to} U A0 U Al
U A2.
(i) Let E(GO) = {(to, 00), (to, 01),

(to, 02} UEOU EL U E2 U £0,1 U
£1,2 U £0,2.

(iv) Ei is a set of n edges (xi, yi)
such that all differences {£(x — vy)
mod (2n + 1)} = {1, 2,... 2n}.

(v) Ei,j is a set of 2n + 1 edges

{(x1, y)} such that {(x — y) (mod 2n
+ 1)} ={0, 1,..., 2n}.

(Vi)

Fig.

GO is a cubic graph.

3(a) shows the computer
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generated labeling of a graph, and
Fig. 3(b) shows the same graph
relabeled in standard form.

Given the labeled graph GO, define
the graphs Gi, i = 1,..., 2n as follows:

. V(Gi)=V (GO).

. (xk, yj) e E(GI) iff (x — 1)k,
(y — i)j) e GO, where arithmetic is
mod 2n + 1.

It is easy to see that the mappings
<i(xk) = (x + i mod (2n + 1))k and
<\(to) = to, for i = 1,..., 2n, map GO
onto 2n isomorphic, pairwise edge-
disjoint, cubic graphs on the same set
of wvertices, yielding the spanning
graph design (6n + 4, GO, 1 ).
Following design theory custom, we
call these decompositions cyclic
decompositions.

It is clear that the freedom of
choosing the edges within each Ei
and Ei,j promises a very large
number of cubic graphs of order 6n +
4 that decompose K6n+4. The cubic
labeling in Fig. 4 can be readily
implemented in  programs that
generate spanning cubic graph
decompositions. At this stage we
embarked on a BFS of all cubic
graphs of order 16. We
independently wrote two programs
that complemented each other. In the




first, cubic graphs were picked from
Brendan McKay’s list [16] and the
program tried to fit them with the
cubic labeling. In the other program
we started by generating all possible
standard form cubic labelings and
then matching these graphs with
those in Brendan’s list. The results
were somewhat surprising. Almost
all cubic graphs of order 16
cyclically decomposed K16.
Specifically, all 4060 connected
cubic graphs of order 16 decompose
K16 cyclically. Of the 147
disconnected cubic graphs of order
16,135 decompose K16 cyclically,
nine decompose K16 non-cyclically,
and three fail to decompose K16.

The website [1] contains a list of all
cubic graphs of order 16, with
standard form cubic labelings when
they exist, other decomposition
descriptions and the three failed
graphs. The listing of the graphs is in
the same order as in McKay’s list
[16]. We must add that our claim that
three graphs do not decompose K16
(namely K4 + K3 3 + PS3,2K4 + G8
(cf. Fig. 6) and K3 3+ the Petersen
graph) are computational proofs. We
could not come up with a
mathematical argument to
substantiate this claim.

2.2. The cubic labeling, DFS




In this section we use a number of
approaches to demonstrate the power
of the standard cubic labeling to
generate infinite sequences of
spanning cubic graph designs. The
first such infinite sequence was
constructed by Hanani et al. [7].
They constructed resolvable BIBDs
B[4,1; v] for all v =4 mod 12, thus
proving that the cubic graph
consisting of 3k + 1K4’s decomposes
K12k+4. A second family was
constructed by Adams et al. [3]
where cubic graphs consisting of
disjoint copies of the 3-cube were
shown to decompose K16+24k.

For our first example let Tn be the
sequence of recursively defined
planar cubic graphs:

. Let TO = K4 be embedded in
the plane with one vertex, say O,
inside the outer triangle.

. Assume that Tn—1 is
embedded in the plane so that its
outer face is a triangle.

. To construct Tn subdivide
each of the three edges of the outer
face of Tn—1 by a vertex. For each
of these three vertices add a new
vertex (into the outer face of Tn—1)
and join it to the corresponding




vertex. Finally add three edges
joining the vertices of degree one.
The three added vertices can be
embedded into the outer face of
Tn—1 so that the resulting graph is
planar.

Clearly Tn has 6n + 4 vertices, it has
one triangular face (the outer face),
three 4-faces (around the center 0),
three 5-faces, and the remaining
faces are hexagons; see Fig. 7.

Fig.7. Thegraph Tn.

Theorem 2.1. For every n > 1, Tn
decomposes Kén+4.

Proof. Let 1 < x < n and let xi e Al
(Ai is as defined in the standard form
cubic labeling.) The following cubic
labeling generates this graph:

. In each Ei select n edges: (],
—XI).

. In Ei,i+1 select the perfect
matching {(xj, (-x + 1)j+1)} (with all
arithmetic done modulo 2n + 1 on
the vertex labels and mod 3 on the
indices).

Clearly, the resulting graph is a cubic
graph. Since — (n+1)+1=—n=
n+ 1 (mod 2n + 1) the vertices {(n +

] [iile}




10, (n + 1)1, (n + 1)2} form a
triangle, the outer triangle in Fig. 7.
The following alternative description
of the graph Tn will help. Tn consists
of n internal cocentric hexagons
{C1,..., Cn}. C1 = {00, 11, 02, 10,
01, 12} and the ‘‘inward’’ edges (0k,
to), k = 0, 1, 2. The hexagons Cj =
{i0, (2n+2 — 1)1, i2, (2n + 2 — )0,
i1, 2n + 2 — )2}, i = 2,..., n have
“inward’’ edges (ik, 2n + 1 — i)k),
k =0, 1, 2, connecting them to the
hexagons Cj— 1. The vertices of the
outer triangle {(n + 1)0, (n + 1)1, (n
+ 1)2} are connected by an edge to
the vertices {n0, nl, n2} of the
hexagon Cn. All these edges are the
edges of the cubic labeling. Fig. 7
provides a visual proof of the
theorem. O

Another infinite  sequence  of
spanning cubic graph designs is the
sequence K4 + nPS3 (where PS3 is
the 3-prism). It is known that K4 +
PS3 does not decompose K10. We
have:

Theorem 2.2. For every n ~ 1 (mod
3), K4 + nPS3 decomposes K6n+4.

Proof. We give a short description of
the applicable cubic labeling and
leave the details to the reader. Let 1
< x < nand let xi e Ai (Ai is as
defined in the standard form cubic
labeling.) We start with the edges
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{(xi, —xi)} in each Ei. We add the
edges EO1 = {(x0, (2x)1)}, E12 =
{(x1, (nx)2)} and E2,0 = {(x2, —
x0)}.The set {to, 00, 01, 02} spans a
K4. The vertices

{x0, (—x)0, (2x) 1, (—2x)1, (2nx)2,
(—2nx)2}

span a copy of PS3 (note that 2nx =
—x mod (2n + 1)). It is easy to check
that this is a proper labeling and GO
= K4 + nPS3. If n = 3k + 1 then gcd
(2n+ 1, 2n— 2) = 3 and the edges in
E12 will not form a cubic labeling,
(all differences will be multiples of
3).0

In Fig. 8 we show a standard form
cubic labeling of K4 + 4PS3. We
also found a standard form cubic
labeling for K4 + 7PS3. These results
led us to:

Conjecture 2.1. For every n > 1, K4
+ nPS3 decomposes K6n+4.

Here is another example of a simply
stated DFS problem. Let DG2n be
the cubic graph C2n plus the main
diagonals, see Fig. 4. As noted in
[2,13], DG10 does not decompose
K10. On the other hand, DG16 and
DG22 cyclically decompose K16 and
K22 respectively. They admit a cubic

AN




labeling as in Fig. 9.

We could not find a way to
generalize these labelings but we
conjecture:

Conjecture 2.2. For all n > 1 ,
DG6n+4 decomposes K6

A similar graph, K4 +DG6n could be
handled with a different kind of
labeling, using group elements. The
following theorem demonstrates this.

Theorem 2.3. 1f 2n + 1 = pr (p prime)
and gcd(n, 3) = 1 then K4 + DG6n
decomposes Kén+4.

Proof. Let 1 < x < n and let xi e Al
(Ai is as defined in the standard form
cubic labeling.) Let a be a primitive
root in GF(pr). Label the vertices and
edges of a graph G of order 6n + 4 as
follows:

. The vertices {TO, 00, 01, 02}
form a copy of K4.

. Ai = {1i, ai, a2, ..., a2n— 1}, i
=0,1,2

. In each Ai add a matching

consisting of the edges (xi, (-x)i).

. Add the edges {(xi, (ax)i+1)},
where the index is taken modulo 3.

VIR




Clearly, G is a cubic graph. Since ax
— X=ay—Yyand a2x — x = a2y —
y, iIf X =y this labeling is a standard
form cubic labeling of the cubic
graph G and thus it decomposes
K6n+4. So we need to show that G =
K4 + DG6n. As noted above, {to, 00,
01, 02} forms a copy of K4.

Consider the sequence:
S = {10, a1, a22, a0, a4, ajj, ..., a2n,
.., @}

We first note that the vertices in AO
appear in this sequence in every third
position, that is, as a03k. Similarly,
Al appears in the subsequence af*1
and A2 in the subsequence a3<+2.
Also since ged(n, 3) = 1, a2n = 1,
a4n = 1 will appear in the sequence
with subscripts 0, 1, 2. Similarly, it
can be easily seen that the sequence
contains all vertices in AO U A1 U
A2. Also ak is connected by an edge
to a-ij+11. Finally, abn—1 = a—1
and a—1 is connected by an edge to
10. Thus the sequence S forms a
cycle of length 6n. Since a is a
primitive root modulo 2n + 1, an =
—1. For every vertex a*k, the vertex
aln++ = — aJk is at distance 3n from
it on the cycle S. But these 2 vertices
are connected by an edge and hence
S spans a subgraph isomorphic to
DG6n. O




Conjecture 2.3. For every n > 1,
DG6n + K4 decomposes Kén+4.

We were able to identify other
sequences of spanning cubic graph
designs. These theorems
demonstrated three different
samples: a complete sequence, a
partial but infinite sequence and
using groups for labeling. Other
sequences, like the cubic graphs
DG6n+4, are still waiting on the
decomposition pile.

2.3. Concluding remarks

By [5], the following decision
problem is in NP:

Input: A cubic graph G of order 6n +
4,

Output: TRUE if G decomposes
K6n+4.

However, is the following problem
also in NP?

Input: A cubic graph G of order 6n +
4.

Output: TRUE if G does not
decomposes K6n+4,

We were not able to find
“‘constructive’’ proofs or find ideas
for proving that cubic graphs fail to
decompose K6n+4, even for a single
graph of order 16.

A closely related problem is how

ailiral




many edge-disjoint copies of a given
cubic graph G of order 2n can fit
inside K2n. It follows from a
theorem of Sauer and Spencer [22]
that if G has at least 18 vertices then
at least two edge-disjoint copies of G
can fit inside K2n. We conjecture:

Conjecture 2.4. If G is a cubic graph
of order 2n, n > 7, then G can cover
at least 2/3 of the edges of K2n.

Phong doan (gia dinh) 2.4. Néu G
12 mot dd thi bac ba order 2n, n>
7, thi G c6 thé bao phu it nhat 2/3
sb canh ctia K2n.






