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On Partitions of a Finite Set

ABSTRACT

A pair of partitions nlt of a finite set S into
disjoint non-empty subsets will be called
conjugate if for each se S, the ordered pair
(Vi (\?), v2 (s)) determines s, where v,(i)
denotes the cardinality of the subset of n{ to
which s belongs. In this note we show that S
has a pair of conjugate partitions if and only
if the cardinality of S is not equal to 2, 5, or
9. Partitions of this type provide a short
solution to a problem arising in circuit
theory.

INTRODUCTION

Suppose we have a cable consisting of n
indistinguishable wires with terminals at
two points A and B, and suppose for each
terminal at A it is desired to identify its mate
at B. We shall assume that the only
operations available for making such an
identification are interconnecting sets of
terminals at one end and testing for current
flow in the terminals at the other end. For
example, if all terminals at A are connected
together, then a current can flow between
any two terminals at B. Without this
assumption, the desired identification would
present no problem, since if we denote the
terminals at A by Aiy 1 </ < n (and
similarly for B), then we simply test to see if
a current can flow between Al and Blt Ax
and B2, m m m, until we find a Bix such that
a current can flow between Ax and Band
consequently we know A{ and Bi%
represent the same wire. We then use the
same procedure on A2, etc. For long cables,
we shall restrict ourselves further to
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procedures of the following type:

Certain connections are made at A. We then
go to B and make tests and, using the test
results, certain connections. We finally
come back to A, disconnect the connections
initially made, and perform further tests.
The information now in hand should be
enought to determine for each j the terminal
pairs Aj and B, . of wire j.

The following ingenious algorithum for
solving this problem is due to my colleague
K. C. Knowlton. Before presenting the
general solution, a typical specific example
will be given. Consider the case n = 6.
Define the partitions P: {1,2,3}, {4,5}, {6},
and P’: {1,4,6}, {2,5}, {3}, of the integers
{1, 2, 3, 4, 5, 6}. If we let f(i) denote the
number of elements in the set of P which
contains i and f'(i) the similar function for
the partition P', then we have the table

We note that in the table all the ordered
pairs (f(i),f(i)) are distinct. To identify the
terminals in our cable of six wires we first
label those at A by Alt A2,.., Ae and
connect them as shown in Figure 1(a). We
now test at B to decide which wires have
been connected at A.

FIGURE 1

Suppose, for example, we find that we have
the situation indicated in Figure 1(b) where
two wires with the same symbol are joined
at A. We label the x’s with C1; C2 and C3
(arbitrarily), the /s with C4 and C5 and the z
with C6, say, as in Figure 1(c). We next
connect the terminals at B together
according to the partitionP', i.e., as in Figure
1(d). Finally we go back to A, disconnect
the connections initially made there, and test
to decide how many wires a given wire at A
has been joined to at B. For example,




suppose we find that wire Ax is now
connected to exactly one other wire at B.
Since we know that initially At was in a set
of three wires which were connected at A
and now it is in a set of two wires which are
connected at B and, since the pair of
(/(0»/'(0) = (3,2) occurs only for i = 2, then
we can conclude that A1 must correspond to
C2. Similarly if it happens that A5 is now
connected to two other wires at B (so that
Ah Dbelongs to a set of three wires which
have been joined) then A5 must correspond
to C4, etc.

The general solution may be described in
the following way. Let In denote the set of
integers {1,2Suppose there exists a pair of
partitions of In, say P: Pu P2,. .., Pk and P':
P/, P2',.. . ,Pk,, such that, if / (j) demotes the
cardinality of the subsets Pt which contains j
(with /'(/) defined similarly), then the map
[—>m (/(./),/" (./)) is a 1 — 1 mapping of In
into In X h- We shall call such a pair of
partitions conjugate. For 1 < j < k, we first
connect all wires together at A which have
subscripts that belong to the same Pj. We
then go to B and, by suitable testing,
determine the subsets St,. . ., Sk of the Bt
which have been connected together at A.
We next relabel the Bt by C1; C2,. .., Cn so
that for any Sr the set of indices of the Ci
which occur in Sr is exactly one of the Pj.
Now we connect the Ct together to form
subsets ...... , In such a way that, for any j,
the set of indices of the C,: which are in Tj
IS just P-.

Finally we go back to A, disconnect all
connections previously made there, and by
suitable testing decide which A t have been




connected at B. We are now in a position to
determine which labels represent the same
wire. For if we take any wire, say Au, we
know that at B it belongs to a Tj which has,
say, p elements (where we can determine p).
Since we also know the cardinality of the Sk
to which Au belongs, say g, then, by the
way the St and Tt were constructed and by
the hypothesis that all the pairs (p, q) =
(/(m), I' (w)) are distinct, we can determine
the unique Ciu and hence the Bju such that
Au and Bj represent the same wire.

It is the purpose of this note to prove that
pairs of conjugate partitions exist for In if
and only if n 96 2, 5, or 9. We also give a
simple construction of a pair of conjugate
partitions for IH for each n*2,5, or 9.

SOME NECESSARY CONDITIONS

As usual let | A | denote the cardinality of
the set A. \fP: Pu P2,... ,Pk is a partition of
In let C(P) denote the set {| Pi |, | P2 |,..., | Pk
|} where we shall assume from now on that |
Pri<|<--*<]|

LEMMA 1. IfPandP' are conjugate
partitions of In then \ Pk | = | Pk, |.

PROOF. Suppose \Pk\ = m. Since P and P'
are conjugate then C(P') must contain at
least m distinct elements. Consequently
\Pk>\ >m (since we assume that [iy [ <o e
< | Pi' I). Applying the same argument to P'
we see that | Pk | < | Pk, | < | Pk | and the
lemma follows.

If P is a partition of In for which there exists
a partition P' of /,, such that P and P' are
conjugate then we shall call P admissible.




LEMMA 2. If P is admissible and \Pk\ = m
then C(p) = {1,2,..., m}.

PROOQOF. Suppose there exists j such that 1 <
j<mandj$ C(P). Since | Pk, | = m by
Lemma 1 then we must have | C(P) | > m
(since P is admissible). Therefore \Pk\>m+
1, which is a contradiction.

Lemma 3. Suppose P is admissible, \Pk \ =
m and n}- denotes the number of Pi such
that \ Pt | = j. Then »/< [m/ j] (where [X]
denotes the greatest integer not exceeding
X).

PROOF. Suppose there exists j such that >
[mj7] and let P' be a partition of /,, which is
conjugate to P. Since r s Pa, s e Pb and | Pa
|— I Pbl—Jimply that f'(r) 7~ f(s) then
we must have | C(P) \ > j ¢ n}-. But by
Lemmas 1 and 2 (since P' is also admissible)

which is a contradiction. This proves the
lemma.
We combine these lemmas to obtain

THEOREM 1. If P is an admissible partition
of Inand \ Pk \ = m then we have

PROOF. The left side of (1) follows from
Lemma 2 since C(p)={1,2

implies that
from Lemma 3 since
If we let J(m) denote JjjLi j[m/ j] and A(m)

denote [m{m + 1)]/2 then we have
............ ,and....... form >4,




This shows that no admissible partitions
exist for h, h, or la.

SOME SUFFICIENT CONDITIONS
THEOREM 2. If n satisfies A(m) < n < zl(m
+ 1) — 2 for some positive integer m then
there exist conjugate partitions of I,,.
PROOF. If we let r denote n — A(m), then
0 <r <m — 1. Consider the following array:

A row (column) headed by j will be said to
be “open” if there are less than j x’s in that
row (column). By “projecting” an x of the
array, we shall mean deleting a particular x
of the array, replacing it by * and placing a
new X in the same row (column) and also in
the first open column (row). Note that
projecting an X increases the number of x’s
in the array by 1. The “coordinates” of an x
in the array are denoted by the ordered pair
(/, J) where i and j are the headings of the
column and row, respectively, to which x
belongs. In the diagram, the x with
coordinates (2, m — 1) has been projected.
The two new x’s formed have coordinates
(1, m—1)and (2,1).

We now start with the original triangular
array of x’s where we assume that the
number of rows which have a heading of 1
Isr+ 1 (and similarly for columns). We next
project the x’s which have coordinates (j, m
—j-\-Dfor2</<min(r+1, m—21).Ifr
= m — 1 then in addition we place an x at
the intersection of the last row and last
column (so that this x has coordinates (1,1)).
The new array now has A ini) + r xX’s in it
and it is not difficult to see that with this




construction each x has a unique pair of
coordinates. We form two partitions P and
P' of In as follows: Replace the x’s in the
new array by the elements of In (so that
every element of In is used) in an arbitrary
fixed way. For each column (row) of the
array, we form a subset Pj(P/) belonging to
the partition P(P) by letting Pt{P- ) be the
set of all the integers which belong to that
row (column). It follows that (f(j),f (j)) is
just the pair of coordinates which j has in
the array and consequently P and P' are
conjugate partitions of In. This proves the
theorem.

As an example of the above construction, let
n=13 =/1(4) + 3. We start with the array

and project two JC’S and add the extra x
(since r = 7> — m — I)to obtain

We arbitrarily replace the x’s by the
elements of /13 to form

from which we generate the conjugate
partitions of /13:

The only n for which /,, has not been shown
to have conjugate partitions are those of the
form A(m) — 1 and, indeed, we have
already noted that no such partitions exist
for 12,15, or /9. We fill this gap with
THEOREM 3. If n — A(m) — 1 form > 4
then there exist conjugate partitions for

..................................

...................................




and project the x’s which have coordinates
G, m—j) for 2 <j<m— 2. Next we
project the x at (3, m — 2) and place an
additional x at the in-tersection of the last
row and column (so that it has coordinates
(2, 2)). Note that the new points formed
from the projection of the x at (3, m — 2)
have coordinates (2, m — 2) and (3, 2)
which are distinct from the coordinates of
any other x’s in the array (since m > 4 and
the x which was originally at (2, m — 2) has
been projected). It is easily checked that all
x’s in the array have distinct coordinates so
that by replacing the x’s by the elements of
/,, we can form conjugate partitions of In
and the theorem is proved.

CONCLUDING REMARKS

It is interesting to note that, by extending the
construction used in Theorem 3, it is
possible to form an admissible partition P of
In with | Pk | = m and n = J(m) thus
achieving the wupper bound derived in
Theorem 1. However, it is not clear that if n
IS any integer such that A(m) < n < Jim)
then there exists an admissible partition of
In with \Pk\ — m. Since Lemmas 2 and 3
show that for any admissible partition P
with ] Pk | = m, we must have 1 < «,m < [m/
j] then it might be conjectured that any
partition P with 1 <nf< [m/ j] is admissible.
This is not the case, however, as the
following example shows. Let n = 28 and
choose Psothatnx=1,n2=3,n3=2,n4 =
1, n5 =1 and n6 = 1. Suppose P' is a
partition conjugate to P and let F denote < j
< 28}. We shall derive a contradiction.
Since the pair (1,6) must belong to F then
n2' < 2 and ns' = 1. But (6,3), (3,3), and
(2,3) e F so that neither (5,3) nor (4,3)




belong to F. Hence (5,1),(5.2) , (5,4),
(5,5), and (5,6) e F and therefore, since
(6,4), (5,4), (3,4), and (2,4) e F then (4,4) $
F. But we must have (6,2), (5,2), (3,2), and
(2.2) e F so that (4,2) $ F. Thus we have
shown that (4,4), 43), and (4.2)
cannot belong to F which is
impossible. Hence P is not an admissible
partition of /28.
It may be shown that, by using this
procedure, the maximum number of circuit
tests which must be made for the
identification is essentially 2 nlog2 n. On
the other hand, information theory
arguments show that the number of tests
must be at least log2 («!)==« loga n.
It should be remarked that the function

In this form J(m) is recognized as a well-
studied number theoretic function about
which statements such as






