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Electronic Structure
and the Properties of Solids

THE PHYSICS OF THE
CHEMICAL BOND

Walter A. Harrison
Electronic Structure and the
Properties of Solids
ELECTRON STATES

IN THIS PART of the book,
we shall attempt to describe
solids in the  simplest
meaningful framework.
Chapter 1 contains a simple,
brief  statement of the
gquantum-mechanical

framework needed for all
subsequent discussions. Prior

knowledge  of  quantum
mechanics IS desirable.
However, for review, the

premises upon which we will
proceed are outlined here.
This is followed by a brief
description  of electronic
structure and bonding in
atoms and small molecules,
which includes only those
aspects that will be directly
relevant to discussions of
solids. Chapter 2 treats the
electronic structure of solids
by extending the framework
established in Chapter 1. At
the end of Chapter 2, values
for the interatomic matrix
elements and term values are
introduced. These appear also
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in a Solid State Table of the
Elements at the back of the
book. These will be used
extensively to  calculate
properties of covalent and
ionic solids.

The summaries at the
beginnings of all chapters are
intended to give readers a
concise overview of the
topics dealt with in each
chapter. The summaries will
also enable readers to select

between familiar and
unfamiliar material.
CHAPTER |

The Quantum- Mechanical
Basis

SUMMARY

This chapter introduces the
guantum mechanics required
for the analyses in this text.
The state of an electron is
represented by a wave
function t/i. Each observable
is represented by an operator
0. Quantum theory asserts
that the average of many
measurements of an
observable on electrons in a
certain state is given in terms
of these by .....

The quantization of energy
follows, as does the
determination of states from a
Hamiltonian matrix and the
perturbative solution. The
Pauli principle and the time-

nguyén ti. Chang ciing duoc
dé cap dén trong Bang Céc
Nguyén Té Trang Théai Ran o
phia sau sach. Nhitng dit liéu
nay duoc sir dung rong rai dé
tinh toan céc tinh chat cua céc
chat ran cong hoa tri va ion.
Phian tom tit & dau modi
chuong nham giup ngudi doc
nhanh chéng cé mot cai nhin
toan dién vé cac chu dé dugc
xét trong mdi chuong. Phan
tom tat cling giup nguodi doc
lya chon nhitng phan nao minh
can doc.

CHUONG I
Co sé co hoc lugng tur

TOM TAT

Chuong nay trinh bay cac kién
thire co hoc luong tir can thiét
cho cac phan tich trong tai liéu
nay. Trang thai cua mot
electron dugc biéu dién bing
mot ham séng....Mdi quan sat
duoc biéu dién biang mot toan
ta. Ly thuyét co hoc luong tu
khing dinh ring gia tri trung
binh trén nhiéu lan do ctia mot
quan sat trén cac electron ¢
mot trang thai nao dé duoc
biéu dién theo nhiing dai lugng
nay (y néi dén ham soéng va
toan tt) la....Luong ti hoa
ning lugng ciing gidng nhu
xac dinh trang thai tor ma tran
Haminlton va nghiém nhiéu
loan. Nguyén ly Pauli va su
phu thudc thoi gian cua trang




dependence of the state are
given as separate assertions.

In the one-electron
approximation, electron
orbitals in atoms may be
classified according to
angular momentum. Orbitals
with zero, one, two, and three
units of angular momentum
are called s, Pf d,
and/orbitals, respectively.
Electrons in the last unfilled
shell of s and p electron
orbitals are called valence
electrons.  The  principal
periods of the periodic table
contain atoms with differing
numbers of valence electrons
in the same shell, and the
properties of the atom depend
mainly upon its valence,
equal to the number of
valence electrons. Transition
elements, having different
numbers of d  orbitals
or/orbitals filled, are found
between the principal periods.
When atoms are brought
together to form molecules,
the atomic states become
combined (that IS,
mathematically, they are
represented by linear
combinations  of  atomic
orbitals, or LCAQO’s) and
their energies are shifted. The
combinations of  valence
atomic orbitals with lowered
energy are called bond
orbitals, and their occupation

thai duoc dua ra dudi dang
nhiing tién dé riéng biét.

Trong phép gan ding mot
electron, cac orbital trong
nguyén t c6 thé duoc phan
loai theo momen dong luong.
Mot cach tuong wng, CAac
momen khdng, mot, hai va ba
don vi momen ddng lugng
duoc goi la cac orbital s, p, d
va f. Cac electron ¢ phén lop s
va p ngoai cung chua day goi
la cac electron héa tri. Tinh
chat tuan hoan co ban cua
bang tuan hoan chaa céc
nguyén tir c6 sd electron hoa
tri khac nhau trong cung mot
I6p (phan 16p), va cac tinh chat
ctia nguyén tir chu yéu phu
thuoc vao hoa tri cua nd, chinh
la sb electron hoa tri. Céac
nguyén té chuyén tiép, co sb
orbital d khac nhau hoac céac
orbital f dwgc lam diy xuat
hién gitra cac chu ky co ban.
Khi c4c nguyén ti dén gan
nhau dé hinh thanh céc phan
tur, cac trang thai nguyén ta tro
thanh két hop (tac 14, vé mat
todn hoc, chung dugc biéu
dién bang cac té6 hop tuyén
tinh cua céc orbital nguyén ti,
hoaic LCAO) va nang luong
cta ching bi dich chuyén. Su
két hop cua cac orbital nguyén
tr hoa tri v6i ning luong thap
hon dugc goi la cac orbital lién
két, va chinh viéc cac electron
chiém nhiing orbital nay da
lién két cac phan tr voi nhau.




by electrons bonds the
molecules together. Bond
orbitals are symmetric or
nonpolar  when identical
atoms bond but become
asymmetric or polar if the
atoms are different. Simple
calculations of the energy
levels are made for a series of
nonpolar diatomic molecules.

1-A Quantum Mechanics

For the purpose of our
discussion, let us assume that
only electrons have important
gquantum-mechanical
behavior. Five assertions
about quantum mechanics
will enable us to discuss
properties of electrons. Along
with these assertions, we shall
make one or two clarifying
remarks and state a few
consequences.

Our first assertion is that

(@ Each  electron IS
represented by a wave
function, designated as ij/(r).
A wave function can have
both real and imaginary parts.
A parallel statement for light
would be that each photon
can be represented by an
electric field <f(r, t). To say
that an electron is represented
by a wave function means
that specification of the wave
function gives all the
information that can exist for

Cac orbital lién két c6 tinh chat
d6i xung hoic khong cé cuc
khi cac nguyén ta gidng hét
nhau lién két nhung s& bat ddi
xang hodic cd cuc néu cac
nguyén tir khac nhau. Viéc tinh
toan don gian cac muc nang
lvong duogc thuc hién cho mot
loat cac phan ttr hai nguyén tir
khong cé cuc.




that electron except
information about the
electron spin, which will be
explained later, before
assertion (d) . In a
mathematical sense,
representation of  each
electron in terms of its own
wave function is called a one-
electron approximation.

(b) Physical observables
are represented by linear
operators on the wave
function.  The  operators
corresponding to the two

fundamental observables,
position and momentum, are
position

momentum

where h is Planck’s constant.
An analogous representation
in the physics of light is of
the observable, frequency of
light; the operator
representing the observable is
proportional to the derivative
(operating on the electric
field) with respect to time,
d/dt. The operator r in Eq. (1-
1) means simply
multiplication (of the wave
function) by position .
Operators for other
observables can be obtained
from Eq. (1-1) by substituting
these  operators in the
classical expressions for other
observables. For example,
potential energy IS
represented by a




multiplication by y(r). Kinetic
energy is represented by
p22m = - (fi2l2m)v2. A
particularly Important
observable is electron energy,
which can be represented by a
Hamiltonian operator: (1-2)
The way we use a wave
function of an electron and
the operator representing an
observable is stated in a third
assertion:

(c) The average value of
measurements of an
observable 0,for an electron
with wave function Ip, is

(If li/ depends on time, then
so also will (0).) Even though
the wave function describes
an electron fully, different
values can be obtained from a
particular measurement of
some observable. The
average value of many
measurements of the
observable 0 for the same \I/
is written in Eq. (1-3) as <0>.

The integral in the numerator
on the right side of the
equation is a special case of a
matrix element; in general the
wave function appearing to
the left of the operator may
be different from the wave
function to the right of it. In
such a case, the Dirac
notation for the matrix
element is




In a similar way the
denominator on the right side
of Eq. (1-3) can be shortened
to (ip 11//). The angular
brackets are also used
separately. The bra (I I or {yi
| means IAI(r)*; the ket 12) or
I \]j2) means 11/2(r)- (These
terms come from splitting the
word “ bracket.”) When they
are combined face to face, as
in Eg. (1-4), an integration
should be performed.

Eg. (1-3) is the principal
assertion of the quantum
mechanics needed in this
book. Assertions (a) and (b)
simply define wave functions
and operators, but assertion
(c) makes a connection with
experiment. It follows from
Eqg. (1-3), for example, that
the probability of finding an
electron in a small region of
space, d3r, is il/*(r)\jj(r)d3r.
Thus is the probability
density for the electron.

It follows also from Eq. (1-3)
that there exist electron states
having discrete or definite
values for energy (or, states
with discrete values for any
other observable). This can be
proved by construction. Since
any measured quantity must
be real, Eq. (1-3) suggests
that the operator 0 is
Hermitian. We know from
mathematics that it is possible




to construct eigenstates of
any  Hermitian  operator.
However, for the Hamiltonian
operator, which is a
Hermitian operator,
eigenstates are obtained as
solutions of a differential

equation, the time-
independent Schroedinger
equation,

(1-5)

where E is the eigenvalue. It
Is known also that the
existence of boundary
conditions (such as the
condition that the wave
functions vanish outside a
given region of space) will
restrict the solutions to a
discrete set of eigenvalues E,
and that these different
eigenstates can be taken to be
orthogonal to each other. It is
important to recognize that
eigenstates are wave
functions which an electron
may or may not have. If an
electron has a certain
eigenstate, it is said that the
corresponding state IS
occupied by the electron.
However, the various states
exist whether or not they are
occupied.

We see immediately that a
measurement of the energy of
an electron represented by an
eigenstate will always give
the wvalue E for that
eigenstate, since the




average value of the mean-
squared deviation from that
value is zero:

We have used the eigenvalue
equation, Eg. (1-5), to
write.....The electron energy
eigenstates, or energy levels,
will be fundamental in many
of the discussions in the
book. In most cases we shall
discuss that state of some
entire system which is of
minimum energy, that is, the
ground state, in which,
therefore, each electron is
represented by an energy
eigenstate corresponding to
the lowest available energy
level.

In solving problems in this
book, we shall not obtain
wave functions by solving
differential equations such as
Eqg. (1-5), but shall instead
assume that the wave
functions that interest us can
be written in terms of a small
number of known functions.
For example, to obtain the
wave function ... for one
electron in a diatomic
molecule, we can make a
linear combination of wave
functions and i//2. where 1
and 2 designate energy
eigenstates for electrons in
the separate atoms that make
up the molecule. Thus,
..................... (1-7)
where Ui and u2 are




constants. The average
energy, or energy expectation
value, for such an electron is
given by

The states comprising the set
(here, represented by \il/i)
and 111/2)) in which the wave
function is expanded are
called basis states. It is
customary to choose the scale
of the basis states such that
they are normalized; that is,
(Al = (Y2 | ~2) = 1-
Moreover, we shall assume
that the basis states are
orthogonal: (ipi I il/2) = O.
This may in fact not be true,
and in Appendix B we carry
out a derivation of the energy
expectation  value  while
retaining overlaps in (y1 1Y1)-

It will be seen in Appendix B
that the corrections can
largely be absorbed in the
parameters of the theory. In
the interests of conceptual
simplicity, overlaps are
omitted in the main text,
though  their effect is
indicated at the few places
where they are of
consequence.

We can use the notation Hij =
(II/i IHI then Eg. (1-8)
becomes

(Actually, by Hermiticity,
H21 = H*2, but that fact is




not needed here.)

Eg. (1-7) describes only an
approximate energy
eigenstate, since the two
terms on the right side are
ordinarily not adequate for
exact description. Howeyer,
within this approximation, the
best estimate of the lowest
energy eigenvalue can be
obtained by minimizing the
entire expression (which we
call E) on the right in Eq. (1-
9) with respect to Ui and u2.
In particular, setting the
partial derivatives of that
expression, with respect to uf
and uf, equal to zero leads to
the two equations

(In  taking these partial
derivatives we have treated
ul,uf,u2, and u\ as
independent. It can be shown
that this is valid, but the proof
will not be given here.)
Solving Egs. (1-10) gives two
values off. The lower value is
the energy expectation value
of the lowest energy state,
called the bonding state. It is

......................

An electron in a bonding state
has energy lowered by the
proximity of the two atoms of
a diatomic molecule; the
lowered energy helps hold the
atoms together in a bond. The




second solution to Egs. (1-10)
gives the energy of another
state, also in the form of Eq.
(1-7) but with different and
u2. This second state is called
the antibonding state. |Its
wave function is orthogonal
to that of the bonding state;
its energy is given by

We may substitute either of
these energies, Eb or £a, back
into Egs. (1-10) to obtain
values for Uj and u2 for each
of the two states, and
therefore, also the form of the
wave function for an electron
in either state.

Hn — H221 - Then, Eq. (1-
11) or Eq. (1-12) can be
expanded in the perturbation
HI2 (and H2I) to obtain
(1-13)

for the energy of a state near
Hill a similar expression may
be obtained for an energy
near H2 2 m These results are
part of perturbation theory.




The corresponding  result
when many terms, rather than
only two, are required in the

expansion of the wave
function is

Similarly, for the state with
energy near H1U the

coefficient u2 obtained by
solving Eq. (1-10) is

The last step uses Eq. (1-13).
When H2l is small, u2 is
small, and the term «2 ¢é2(r)
in Eq. (1-7) is the correction

to the unperturbed state,
\vi{i), obtained by
perturbation  theory. The

wave function can be written
to first order in the
perturbation, divided by Hn -
H22, and generalized to a
coupling with many terms
as....... (1-16)

The perturbation-theoretic
expressions for the electron
energy, Eq. (1-14), and wave
function, Eq. (1-16), will be
useful at many places in this
text.

All of the discussion to this
point has concerned the
spatial wave function ij/(r) of




an electron. An electron also
has spin. For any I7(r) there
are two possible spin states.
Thus, assertion (a) set forth
earlier should be amended to
say that an electron is
described by its spatial wave
function and its spin state.

The term “ state 7 is
commonly used to refer to
only the spatial wave

function, when electron spin
Is not of interest. It is also
frequently used to encompass
both  wave function and
electron spin.

In almost all systems
discussed in this book, there
will be more than one
electron. The individual
electron states in the systems
and the occupation of those
states by electrons will be
treated separately. The two
aspects cannot be entirely
separated because the
electrons interact with each
other. At various points we
shall need to discuss the
effects of these interactions.

In discussing electron
occupation of states we shall

require an additional
assertion—the Pauli
principle:

(d)  Only two electrons can

occupy a single spatial state;
these electrons must be of




opposite spin. Because of the
discreteness of the energy
eigenstates discussed above,
we can use the Pauli principle
to specify how states are
filled with electrons to attain
a system of lowest energy.

Because we shall discuss
states of minimum energy, we
shall not ordinarily be
interested in how the wave
function changes with time.
For the few cases in which
that information is wanted, a
fifth assertion applies:

() The time evolution of

the wave function is given by

the Schroedinger equation,
(1-17)

This  assertion is  not
independent of assertion (c);
nevertheless, it is convenient
to separate them.

At some places, particularly
In the discussion of angular
momentum in the next
section, consequences of
these five assertions will be
needed which are not
immediately obvious. These
consequences will be stated




explicitly in the context in
which they arise.

1-B Electronic Structure of
Atoms

Because the potential energy
K(r) of an electron in a free
atom is spherically symmetric
(or at least we assume it to
be), we can expect the
angular momentum of an
orbiting electron not to
change with time. In the
guantum-mechanical context

this means that electron
energy eigenstates can also be
chosen to be angular

momentum eigenstates. It is
convenient to state the result
in terms of the square of the
magnitude of the angular
momentum, L2, which takes
on the discrete values
L2=/(/+Dh2, (1-18)

where / is an integer greater
than or equal to 0. For each
value of | there are 2/ + 1

different orthogonal
eigenstates; that is, the
component of angular

momentum along any given
direction can take on the
values mh, withm = —/,—/ +
1., 1-1, /¢

The spatial wave functions
representing these states are
called orbitals since we can




imagine the corresponding

classical  (that is, not
quantum-mechanical)

electron orbits as having
fixed energy and fixed

angular momentum around a
given axis. The term orbital
will be used to refer
specifically to the spatial
wave function of an electron
in an atom or molecule. We
will also use the term orbital
for electron wave functions
representing chemical bonds
where the corresponding
electron orbits would not be
so simple.

The 21 4- 1 orthogonal
eigenstates with different m
values all have the same
energy, because the potential
V(r) is spherically symmetric
and the energy does not
depend upon the orientation
of the angular momentum.
States of the same energy are
said to be degenerate. The
angular momentum properties
follow from assertions (a),
(b), and (c) in Section 1-A but

are not derived here. The
concept of angular
momentum IS convenient

since it makes it possible to
classify all energy eigenstates




by means of two quantum
numbers, the integers | and
m.

In the common terminology
for states of small angular
momentum, the first four—of
smallest angular
momentum—are

The first three letters, s, p,
and d, were first used nearly a
century ago to describe
characteristic ~ features  of
spectroscopic lines and stand

for *“ sharp,” “ principal,” and
“diffuse.”

For any given value of | and
m there are many different
energy eigenstates; these are
numbered by a third integer,
ft, in order of increasing
energy, starting withn=1+ 1.
This starting point is chosen
since, for the hydrogen atom,
states of different | but the
same n are degenerate; that is,
E = (n, ,m\H\n,l, m) depends
only on the quantum number
n. Thus n is called the




principal quantum number.
Only for the hydrogen atom,
where the potential is simply
e2/r, does the energy
depend on n alone. However,
the same numbering system is
universally used for all other
atoms too.

principle. These atomic states
are the building blocks for
description of the electron
energies in small molecules,
and in solids, as well as in
individual atoms.

The s orbitals have vanishing
angular momentum; |1 = 0
(@and m =0, since I m | < /).
The wave function for an s
orbital IS spherically
symmetric, and it is depicted
In diagrams as a circle with a
dot representing the nucleus
at the center (Fig. 1-1). The
lowest energy state, n = 1, is
called a Is state. Its wave
function decreases
monotonically with distance
from the nucleus. The wave
function of the next state, the




2s state, drops to zero,
becomes negative, and then
decays upward to zero. Each
subsequent s orbital has an
additional node. (Such forms
are in fact necessary if the
orbitals are to be orthogonal
to each other.)

FIGURE 1-1

This depiction of an 5 orbital
will be used frequently in this
book.

FIGURE 1-2

The three 5 states of lowest
energy for atomic hydrogen.
The orbitals, multiplied by r,
are plotted as a function of
distance from the nucleus.

A plot of the first three s
orbitals for a hydrogen atom
Is given in Fig. 1-2.

The p orbitals have one unit
of angular momentum, / = 1,
there are three orbitals
correspondingtom=—1, m
=0, and m = 1. (See Fig. 1-
3.) Any orbital, including
those of the p series, can be
written as a product of a
function of radial distance
from the nucleus and one of
the spherical harmonics YI,
which are functions of angle
only (this is explained in
Schiff, 1968, p. 79):

.........................

(1-




For a given |, the radial
function is independent of m.
For s orbitals, the spherical
harmonic is Yq = (4n) 1/2.
For p orbitals, the spherical
harmonics are

FIGURE 1-3

This p-orbital depiction will
be used frequently in the
book.

In solid state physics it is
frequently more convenient to
take linear combinations of
the spherical harmonics to
obtain angular dependences
proportional to the
component of radial distance
from the nucleus along one of
the three orthogonal axes X,
y, or z. In this way, the three
independent p orbitals may be
written

(1-20)

These forms, used by Slater
and Koster (1954), will be
used extensively in this text.
For each n when | = 1, there
are three p orbitals oriented
along the three Cartesian
axes. Diagrams such as those




shown in Fig. 1-4 illustrate
the three angular forms.

Except for the different
orientations, the orbitals look
the same. The wave function
IS zero in an entire plane
perpendicular to the axis of
orientation and, at a given
radius, the wave function is
positive on one side and
negative on the other. There
are various other ways to
visualize such orbitals. Three
are compared in Fig. 1-5; Fig.
1-5,c is simplest and most
common and, except for the
sign of the wave function, is
the same as the orbital shown
at the left in Fig. 1-4.

The d orbitals have two units

of angular momentum, | = 2,
and therefore five m values:
=—2m=—1m=0,m

=1, and m = 2. They can be
conveniently

FIGURE 1-4

Three p orbitals, each
directed along a different
Cartesian axis.

(a) Fishnet plot




(b) Contour plot

(c) Schematic representation
FIGURE 1-5

Three ways of representing
atomic p orbitals.

represented in terms of
Cartesian coordinates in the
form

Fig. 1.6 corresponds to the
third angular form listed in
Eg. (1-21).

A very important feature of d
orbitals is that they are
concentrated much  more
closely at the nucleus than are
s and p orbitals. The physical
origin of this can be

FIGURE 1-6

The d orbiiai corresponding
to the xy/r2 form in Eq. (1-
21).

understood in terms of the n
— 3 state of hydrogen. The
3s, 3p, and 3d states all have
the same energy, but of these
three, the d state corresponds
classically to an orbit that is
circular. At lesser angular
momentum, a classical orbit
of the same energy reaches
further into space; this
corresponds to the great
spatial extent of the p orbital.
The S state, which
Corresponds classically to an
electron vibrating radially
through the nucleus, stretches
even further from the nucleus.
Therefore, d states tend to be
influenced much less by




neighboring atoms than are s
and p states of similar energy.
We shall have little occasion
to discuss /'orbitals, though
they are important in studying
properties of the rare-earth
metals. The f orbitals are
even more strongly
concentrated near the nucleus
and isolated from neighboring
atoms than are d orbitals.

Let us now discuss the
electronic states in the
hydrogen atom. As indicated,
the energy of an electronic
state for hydrogen depends
only upon the principal
quantum number n. In this
book, atomic energy
eigenvalues, or other
eigenvalues measured from
the same zero of energy, will
be designated by F. rather
than E. For hydrogen,
............... (1122)

where a0 is the Bohr radius,
0.529 A, e is the magnitude
of the electron charge, m is
the electron mass, n is the
principal quantum number,
and the unit of energy is the
electron volt (eV).

A sketch of the energies of
the states of hydrogen, the
energy levels, is given in Fig.
1-7. In the ground state of the
hydrogen atom, a single
electron occupies the s
orbital. All of the other states,
having  higher  energies,




represent excited states of the
system. The electron can be
transferred from the ground
state to an excited state by
exposing it to light of angular
frequency CO = AE/h, where
AE is the energy difference
between the two levels.
Indeed, the most direct
experimental study of energy
levels of atoms (also called
term values) in excited states
Is based upon spectroscopic
analysis of the corresponding
light absorption and emission
lines.

To understand the electron
states  systematically in
elements other than
hydrogen, imagine that the
charge of the hydrogen
nucleus is increased element
by element and, thereby, the
atomic number, z, is steadily
increased. At the same time,
Imagine that an electron is
added each time the nuclear
charge is increased by one
unit e. As the nuclear charge
increases, the entire set of
states drops in energy,
relative to hydrogen. In all
atoms but hydrogen, 5-state
energies are lower than p-
state energies of the same
principal quantum number. In
Fig. 1-8 is shown the relative
variation in energy of
occupied Is, 2s, 2p, 3s, 3p,
3d, 45, and 4p orbitals as the




atomic number (equal to the
number of protons in the
nucleus) increases.

In lithium, atomic number 3,
the Is level has dropped to a
very low energy and is
occupied by two electrons.
The Is orbital is considered
part of the atomic core of
lithium; a single electron
occupies a 2s orbital. In the
lithium row, all elements, to
neon, z= 10, have a “lithium
core”; the energy levels in
successive atoms

FIGURE 1-7

Energy-level diagram for
atomic hydrogen. The lines
are branched at the right to
show how many orbitals each
line represents.

continue to drop in energy
and sp  splitting  (the
difference in energy between
levels, or Elp — £25)
increases. At neon, both 2s
and 2p orbitals have become
filled; starting with the next
element, sodium, they
become part of the atomic
core, since, at sodium, filling
of the 3s orbital begins, to be
followed by filling of the 3p
orbitals. The filling of
successive levels is the
essence of periodic variation
in the properties of elements
as the atomic  number
increases. The levels are
filled in each subsequent row




of the periodic table the same
way they, are filled in the
lithium row, but the number
of states in the atomic core is
larger in lower rows of the
table.

In the potassium row, the
unoccupied 3d level begins to
be filled; its energy has
dropped more slowly than
that of the 3s and 3p levels,
but it becomes filled before
the 4p level begins to fill;
then in the ground state of
scandium the 3d level
becomes occupied with one
electron. Elements in which
some d states are occupied
are called transition metals.
The 3d states have become
completely  filled  when
copper, atomic number 29, is
reached. The 3d states
become part of the atomic
core as z increases further,
and the series Cu, Zn, Ga,...,
gains electrons in an order
similar to that of the series
Na, Mg, Al, —

Almost all of the properties of
elements are determined by
the occupied levels of highest
energy; the electrons filling
the 5 and p levels in each row
(and sometimes those filling
d levels) are traditionally
called valence electrons and
determine

FIGURE 1-9

Periodic chart of the




elements.

chemical properties. They
also have excited states
available to them within a
few electron volts. Since
these energy differences
correspond to
electromagnetic  frequencies
in the optical range, the
valence electrons determine
the optical properties of the
elements. The periodic table
(Fig. 1-9) summarizes the
successive filling of
electronic levels as the atomic
number increases.

1-  C Electronic Structure
of Small Molecules

We have seen how to
enumerate the electron states
of single atoms. If we
consider  several isolated
atoms as a system, the
composite list of electron
states for the system would
simply be the collection of all
states from all atoms. If the
atoms are brought together
closely enough that the wave
functions of one atom overlap
the wave functions of
another, the energies of the
states will change, but in all
cases the number of states
will be conserved. No states
disappear or are created. If
the sum of the energies of the
occupied states decreases as
the atoms are brought
together, a molecule is said to




be bound. An additional
energy must be supplied to
separate the atoms. (It should
be noted that other terms
influence the total energy of a
system, and all influences
must Dbe considered in
evaluating bonding energy.
We shall return to this later.)
It turns out that the energy of
occupied electronic states in
small molecules, and indeed
in solids, which have large
numbers of atoms, can be
rather well approximated with
linear combinations of atomic
orbitals (or LCAO’s). Making
such an  approximation
constitutes a very great
simplification in the problem
of determining molecular
energies since, instead of
unknown  functions, only
unknown coefficients appear
in the linear combination. The
LCAO description of the
occupied molecular orbitals is
much more accurate if the
atomic orbitals upon which
the approximation is based
differ somewhat from those
of the isolated constituent
atoms; this complication will
not arise in this book since
ultimately our calculations
will be in terms of matrix
elements, not in terms of the
orbitals  themselves. The
smaller the number of atomic
orbitals used, the greater will




be the simplification, but the
poorer will be the accuracy.
For our discussion of solids, a
set of orbitals will be chosen
that is small enough to enable
calculation of a wide range of
properties simply. For
calculations of properties
depending only upon
occupied states, the accuracy
will be quite good, but for
excited states—those electron
states which are unoccupied
in the ground state of the
system—the properties are
not accurately calculated. We
can make the same choice of
orbitals in diatomic molecules
that will turn out to be
appropriate for solids.

In describing states of the
small molecule (as well as the
solid) the first step is to
enumerate each of the
electronic states in the atom
that will be wused in the
mathematical expansion of
the electron states in the
molecule. These become our
basis states. We let the index
a =1, 2, 3run from one up to
the number of states that are
used. Then the molecular
state may be written (with the
notation discussed in Section
1-A) as

where the ua are the
coefficients that must be
determined. The orbitals | a)
representing the basis states




are selected to be normalized,
(ala) =1. We also take them
(as in Section 1-A) to be
orthogonal to each other;
<[?la>=0ifp=£a.

Next, we must find the
coefficients ua of Eq. (1-23)
for the electron state of
lowest energy, by doing a
variational calculation as
indicated in Section 1-A. That
Is, we evaluate the variation
In obtaining the second form,
we allow the ua to be
complex, though ordinarily
for our purposes this would
not be essential. We also
make use of the linearity of
the Hamiltonian operator to
separate the various terms in
the expectation value of the
Hamiltonian. In particular, if
we require that variations
with respect to a particular uf
be zero (as in Eqg. 1-10), we
obtain

or more simply,

with E — (v IHI &)/ 1 ¢&).
(Later, specific eigenvalues
will be written as e’s with
appropriate subscripts.) There
IS one such equation for each
p corresponding to a basis
State.

We have obtained a set of
simultaneous linear algebraic
equations  with  unknown
coefficients Ma. Their
solution gives as many
eigenvalues E as there are




equations. The lowest E
corresponds to the lowest
electron state; the next
lowest, to the lowest electron
state having a wave function
orthogonal to that of the first,
and so on. The solution of
these equations gives the ua
which, with Eq. (1-23), give
wave functions for the one-
electron energy eigenstates
directly. The eigenvalues
themselves can also be
obtained directly from the
secular equation, familiar
from ordinary algebra. The
secular determinant vanishes,

det(tf" - Eop«) =0, (1-
27)
where “det ” means

“determinant of” and Opa is
the unit matrix. We have
made one further
simplification of the notation
in writing Hila = (p\H\oc).
We shall see in Section 2-D
how simple estimates of these
matrix elements can be made.
Then, from Egs. (1-26) and
(1-27), we can obtain the
energies and the states
themselves.

Let us use the foregoing
method to describe the states
in a small molecule. The
hydrogen molecule, with two
electrons, is a simple case and
Is more closely related to the
systems we shall be
considering than the simpler




hydrogen molecular ion, H2 *
For the hydrogen molecule,
we use two orbitals, 11) and
12), which represent Is states
on atoms 1 and 2
respectively. Eq. (1-26) then
becomes

where we have made the
natural definition of the Is
energy £s = (l|H|l) = (21H12).
The energy Es is slightly
different from what it would
be in a free atom, first,
because an electron
associated with atom 1 has a
potential energy lowered by
the presence of the second
atom, and second, because
the energy may be lowered as
a result of the choice of a Is
function slightly different
from that of the free atom.
We have defined a matrix
element v2 = — #12 = —H21
to correspond to the notation
we shall use later. The matrix
element v2 is called a
covalent energy, and is
defined to be greater than
zero; v2 will generally be
used for interatomic matrix
elements, in this case between
s orbitals. All the wave
function  coefficients are
taken to be real in this case;
we may always choose real
coefficients but in solids will
find it convenient to use
complex coefficients. Eq. (1-
28) is easily solved to obtain




a low-energy solution, the
bonding state, with energy

as well as a high-energy
solution, the antibonding
state, with

Substituting the eigenvalues
given in Egs. (1-29) and (1-
30) back into Eq. (1-28) gives
coefficients Ul and u2 . For
the bonding state, Ui = u2 =
2~112, and for  the
antibonding state, Mj = —u2
= 2”1/2. The conventional
depiction of these bond
orbitals and antibond orbitals
is illustrated in Fig. 1-10,a.
Notice that the wuse of
orthogonal eigenfunctions for
the two atomic states (taking
the overlap (112) = 0) is not
consistent with Fig. 1-10,b, in
which a clear nonzero overlap
is shown. The derivation
made in Appendix B allows
for a nonzero overlap and
shows that part of its effect
can be absorbed by a
modification of the value of
v2 and the other part can be
absorbed in a central- force
overlap interaction between
the atoms, which is discussed
in Chapter 7. Here, for the
hydrogen  molecule, the
lowering of the energy of the
molecule, in comparison to
separated atoms, is only
approximately accounted for
by Eqg. (1-29). If one wishes
to describe the total energy as




a function of the separation
between atoms, one cannot
simply add the energy of the
two electrons in the bonding
state.  The  central-force
corrections required by this
overlap, as well as other
terms, must all be included.
Bonding orbital ca
Antibonding energy level

Kh Bonding energy level

(@) Homopolar diatomic
molecule

Antibonding orbital

Bonding orbital

(b)  Heteropolar diatomic
molecule

FIGURE 1-10

The formation of bonding and
antibonding combinations of
atomic orbitals in diatomic

molecules, and the
corresponding  energy-level
diagrams.

Although it is possible to
understand the hydrogen
molecule in terms of the ideas
we have discussed, hydrogen
has only limited relevance to
the problems we will be
considering. In fact, it is not
the most satisfactory way to
describe the hydrogen
molecule itself. In the
equilibrium configuration for
hydrogen, the two protons are
so close together that a much
better model is one in which
the two protons are thought of
as being superimposed; that




Is, we consider the nucleus to
be that of the helium atom.
Once this is understood, one
can make corrections for the
fact that in hydrogen the two
protons are actually
separated. Such an approach
IS more in tune with the spirit
of this text: we will always
seek the simplest description
appropriate to the system we
are interested in, and make
corrections afterward. It has
been argued that this united
atom approach, treating H2 as
a correction applied to He, is
inappropriate when  the
protons are far apart. That is
indeed true, but we are
ultimately interested in H2 at
equilibrium spacing. We will
therefore simply restate our
results for H2 in the
terminology to be used later
and move on.

We found that hydrogen Is
levels are split into bonding
and antibonding levels when
the two atoms form the
molecule. The separation of
those two levels is 2V2,
where v2 is the covalent
energy. To find the total
energy of this system it is
necessary to add a number of
corrections to the simple sum
of energies of the electrons. It
will  be convenient to
postpone consideration of
such corrections until




systematic  treatment  in
Chapter 7.

Hydrogen is a very special
case also when it is a part of
other molecules. We saw that
in the lithium row and in the
sodium row of the periodic
table both a valence s state
and a valence p state are
present. We will see that
when these atoms form
molecules, the bond orbitals
are mixtures of both s and p
orbitals. There is no valence p
state in hydrogen, and its
behavior is quite different. In
many ways the hydrogen
proton may be regarded as a
loose positive charge that
keeps a molecule neutral
rather than as an atom that
forms a bond in the same
sense that heavier atoms do.
Thus we can think of
methane, CH4, as “ neon ”
with four protons split off
from the nucleus, just as we
can think of H2 as ‘“helium”
with a split nucleus.

1- D The Simple Polar
Bond

In the H2 molecule just
discussed, the two hydrogen
atoms brought together were
identical, and their two
energies Ss were the same.
We shall often be interested
in systems in which the
diagonal energies ifn and H22
(that is, diagonal elements of




the Hamiltonian matrix) are
different; such molecules are
said to have a hetero- polar or
simply polar bond. Let us use,
as an example, the molecule
LiH. We expect the linear
combinations to be those of
the hydrogen Is orbitals and
lithium 2s orbitals, though as
we indicated at the end of the
preceding section, special

con-siderations govern
molecules involving
hydrogen.

In calculating the energy of
heteropolar bonds, Egs. (1-
28) must be modified so that
£s is replaced by two
different energies, £* for the
low-energy state (for the
energy of the anion) and fij
for the high-energy state (for
the energy of the cation).

The value of one half of the
anion cation energy-
difference is the polar energy:

It is convenient to define the
average of the cation and
anion energy, written as

Then Egs. (1-31) become

The solution of Eqgs. (3-34) is
trivial:

£b and £a are bonding and
antibonding energies,
respectively. The splitting of
these levels is shown in Fig.
1-10,b. In looking at the
energy-level diagram of that
figure, imagine that the




interaction between the two
atomic levels, represented by
v2, pushes the levels apart.
This is the qualitative result
that follows also from the
perturbation-theoretic
expression, Eq. (1-14).

It is also shown in the figure
that the charge density
associated with the bonding
state shifts to the low-energy
side of the molecule (the
direction of the anion). This
means that the molecule has
an electric dipole; the
molecule is said to have a
polar bond. Polarity of
bonding is an important
concept in solids and it is
desirable to introduce the
notion here briefly; it will be
examined later, more fully, in
discussion of solids. To
describe polarity
mathematically,  first we
obtain and u2 values for the
bonding state by substituting
£b for the energy E in Egs.
(1-34), the first equation of
which can then be rewritten
as

(1-36)

Second, if the individual
atomic wave functions do not
overlap, the probability of
finding the electron on atom 1
will be ui /(ul + ui) and the
probability of finding it on
atom 2 will be ui/iui + ui).
This follows from the




average-value theorem, Eq.
(1-3). Manipulation of Eq. (1-
36) leads to the result that the
probability of the electron
appearing on atom 1 is (1 +
0Cp)/2 and the probability of
finding it on atom 2 is (1 —
ap)/2, where ap is the polarity
defined by

We can expect the dipole of
the bond to be proportional to
u\ — u\ = bcp. The polarity of
the bond and the resulting
dipole are central to an
understanding of partially
covalent solids.

Another useful concept is the
complementary quantity,
covalency, defined by

1-  E Diatomic Molecules

In Section 1-C we noted that
molecular hydrogen is unique
in that a single atomic state,
the Is state, dominates its
bonding properties. In the
bonding of other diatomic
molecules, valence s states
and p states are important,
and this will be true also in
solids. Only aspects of
diatomic molecules that have
direct relevance to solids will
be taken up here. A more
complete discussion can be
found in Slater (1968) or
Coulson (1970).

Homopolar Bonds

Specific examples of
homopolar diatomic
molecules are Li 2, Be2, B2,




c2, N2, 02, and F2, though, as
seen in Fig. 1-8, variation in
energy of the s and p electron
states is very much the same
in other series of the periodic
table as it is for these
elements. Four valence states
for each atom must be
considered—a single s state
and three p states. It might
seem at first that the
mathematical expansion of
each molecular electronic
state would require a linear
combination of all of these
valence states; however, the
matrix elements between
some sets of orbitals can be
seen by symmetry to vanish,
and the  problem  of
determining the states
separates into two simpler
problems. Fig. 1-11 indicates
schematically which orbitals
are coupled. The matrix
elements  between  other
orbitals than those indicated
by a connecting line are zero.
The Py orbitals of atoms 1
and 2 are coupled only to
each other. They form simple
bonding and antibonding
combinations just as in the
hydrogen molecule. In a
similar way, the Pz orbitals
form bonding and
antibonding ~ combinations.
The four resulting p-orbital
combinations are called n
states, by analogy with p




states, because each has one
unit of angular momentum
around the molecular axis.
The Tt states are also
frequently distinguished by a
g, for gemde (German for “
even”), or

The coupling of atomic
orbitals in lithium-row
diatomic molecules, and the
resultant bond designations
(at right).

u, for ungerade (“ odd ”),
depending on whether the
wave function of the orbital is
even or odd when inverted
through a point midway
between the atoms. For %
orbitals, the bonding
combination is ungerade a n
orbital that is gerade (ng) is
zero on the plane bisecting
the bond.

A feature of homopolar
diatomic molecules is that s
states and px states are also
coupled, and all four states
are required in the expansion
of the corresponding
molecular orbitals, called O
states. The bonding
combination for a orbitals is
gerade (Gg). The s and p
states are hybridized in the
molecule. (The o-orbital
combinations have no angular
momentum around the
molecular axis.) However, it
IS not necessary to solve four
simultaneous equations;




instead, construct gerade and
ungerade combinations of s
states and of p states. There
are no matrix elements of the
Hamiltonian  between the
gerade and ungerade
combinations, SO the
calculation of states again
reduces to the solution of
guadratic equations, as in the
case of the hydrogen
molecule. Notice that the two
pairs of coupled s and p states
have matrix elements of
opposite sign (Vspa, - Vspa)
because of the difference in
the sign of the p lobe in the
two cases. The general
convention for signs will be
specified in Section 2-D.
FIGURE 1-12

The development of
molecular energy levels as a
pair of lithium-row atoms is
brought together (that s,
internuclear  distance  d
decreases from left to right).
Let us trace the changes in
energy that occur as a pair of
identical atoms from the
lithium row come together.
Qualitatively these changes
are the same for any of the
elements and they are
illustrated schematically in
Fig. 1-12. On the left,
corresponding to large
separations of the atoms, the
energy levels have simply the
atomic energies £s (one s




orbital for each atom) and fip
(three p orbitals for each
atom, px, Py, and pz). As the
atoms are brought together,
the electron levels split (one
energy going down and the
other, up) and bonding and
antibonding pairs are formed.
The n orbitals oriented along
the y-axis have the same
energies as those oriented
along the z-axis. The bonding
and antibonding
combinations for these are
indicated by 1 nlI§8 and Ing,
respectively. The number one
indicates the first
combination of that symmetry
in order of increasing energy.
Each corresponds to two
orbitals and is drawn with
double lines. At large
separation the O orbitals are,
to a good approximation, a
bonding combination of s
states and an antibonding
combination of s states, and a
bonding combination of px
states and an antibonding
combination of px states, in
order of increasing energy.
The  energies of the
intermediate levels, indicated
by 20,, and 3 og in the figure,
become comparable and
should be thought of as
bonding and antibonding
combinations of sp-hybrids,
mixtures of s states and p
states. Their ordering is as




shown, and is the same for all
the diatomic molecules of the
lithium row (Slater, 1968, pp.
451 and 452).

A particularly significant
aspect of the energy levels
seems to apply to all of these
simple diatomic molecules:
the energy of the low-lying
antibonding state 2<7,, is
never greater than that of
either of the two high-energy
bonding states 3og and \nu.
(The latter two can occur in
either order, as suggested in
the figure.) Such crossings of
bonding and antibonding
levels do occur in solids and
are an essential feature of the
electronic structure of what
are called covalent solids.

The Occupation of Levels

As indicated in Section 1-A,
the energy of electron states
and their occupation by
electrons are quite separate
topics. For example, it is
possible to specify the energy
values at an observed
spacing, as in Fig. 1-12, and
then to assign to them, in
order of increasing energy,
whatever electrons are
available, ignoring any effect
that an electron in one level
may have on an electron in
another level. More precisely,
the energy of a state in any
system is defined to be the
negative of the energy




required to move a single
electron from the designated
state to an infinitely distant
loca-tion, without changing
the number of electrons in the
other states. Most theoretical
calculations of energy levels
determine what that energy is
for each state, since this
information is closely related
to a wide \variety of
properties. When we
calculate the total energy of
solids, we will consider
corrections to the sum of
these energies; for the
present, it is satisfactory to
think of these energy levels as
remaining fixed in energy as
electrons are added to them.

If two atoms forming a
diatomic molecule are both
lithium, there are only two
valence electrons, which
would be put in the 2o0g
bonding state; the qualitative
picture of electronic structure
and binding of Li 2 is exactly
the same for H2; the

levels deriving from the
valence p state of lithium may
be disregarded. If the
molecule were Be2, there
would be four electrons in the
molecule; two would occupy
the 20g bonding state, and the
other two would occupy the
2<r,, antibonding state. The
greater energy of the
antibonding electrons  (in




comparison to the atomic
levels) would tend to cancel
the energy of the bonding
electrons, and hence, bonding
would be expected to be
weak, though Be2 is found in
nature. As the atomic number
of the constituents increases,
bonding and antibonding
states are filled in succession.
F2 would have enough
electrons to fill all but the
highest antibonding state,
3ou. A pair of neon atoms
would have enough electrons
to fill all bonding and
antibonding states and, like
Be2, would not be bound at
all.

In 02, when the last levels to
be filled are degenerate, a
special situation occurs. Only
two electrons occupy the Ing
state though there are states to
accommodate four. There are
different ways the state could
be filled, and Hund’s rule
tells us which arrangement
will have lowest energy. It
states that when there is
orbital  degeneracy, the
electrons will be arranged to
maximize the total spin. This
means that each electron
added to a set of degenerate
levels will have the same
(parallel) spin, if possible, as
the electron which preceded
it. The physical origin of this
rule is the fact that two




electrons of the same spin can
never be found at precisely
the same place, for basically
the same reason that leads to
the Pauli principle. Thus
electrons of the same spin
avoid each other, and the
repulsive Coulomb
interaction energy between
them is smaller than for
electrons of opposite spin.
The corresponding lowering
in energy per electron for
parallel-spin electrons,
compared to antiparallel-spin
electrons, is called exchange
energy. It tends to be small
enough that it is dominant
only when there is orbital
degeneracy, as in the case of
02, or very near orbital-
degeneracy. The dominance
of exchange energy is the
origin of the spin alignment
in ferromagnetic metals. (A
more complete discussion of
exchange energy appears in
Appendixes A and c.)

In 02, the two degenerate Ing
states take one electron in a
py state and one in a pz state.
As a result, the charge density
around the 02 molecule has
cylindrical symmetry, though
there is a net spin from the
two electrons. In contrast, if
both electrons were in py
states, they would necessarily
also have opposite spin. This
would lead to a flattened




charge distribution around the
molecule. Hund’s rule tells us
that the former arrangement
has lower energy because of
the exchange energy.

In the same sense that H2 is
like He (as mentioned at the
end of Section 1-C), the
molecule C2H4 is like 02,
except that the two hydrogen
protons are outside the carbon
nucleus rather than inside.
The number of electrons is
the same in both C2H4 and
02 and essentially the same
classification of electron
levels can be made. However,
if the protons in C2H4 are all
placed in the same plane, the
Inu state oriented in that plane
will have lower energy than
that oriented perpendicular to
the plane. The orbital energy
will then be lowered if the
first orbital is occupied with
electrons with both spins.
This planar form in fact gives
the  stable  ground-state
arrangement of nuclei and
electrons in ethylene. If it
were possible to increase the
exchange energy it would
eventually become
energetically favorable to
occupy one Py state and one
pz state of parallel spin. Then
the electron density would be
cylindrically symmetric as in
oxygen, and the protons
would rotate into




perpendicular planes in order
to attain lower Coulomb
interaction energy. C2H4
illustrates several points of
interest. First, any elimination
of orbital degeneracy will
tend to override the influence
of exchange energy. Second,
atoms (in this case, protons)
can arrange themselves in
such a way as to eliminate
degeneracy; this creates an
asymmetric electron density
that stabilizes the new
arrangement. Through this
self-consistent,  cooperative
arrangement, electrons and
atoms minimize their mutual
energy. This same
cooperative action is often
responsible for the spatial
arrangement of atoms in
solids. Once that arrangement
is specified in solids, a
particular conception of the
electronic structure becomes
appropriate, just as in the case
of C2H4. Furthermore, that
conception can be quite
different from solid to solid,
depending on which stable
configuration of atoms is
present.

To make the discussion of the
electronic structure of
diatomic molecules
quantitative, it is necessary to
have values for the various
matrix elements. It will be
found that for solids, a




reasonably good
approximation of the
interatomic matrix elements
can be obtained from the
formula vih = flip h2/(md2),
where d is the internuclear
distance and values for t]ijx
are four universal constants
for SSO, spa, ppo, and ppn
matrix elements, as given in
the next chapter (Table 2-1).
Furthermore, atomic term
values (given in Table 2-2)
can be used for Ep and fis.

Applying such an
approximation to the well-
understood diatomic

molecules will not reveal
anything about those
molecules, but can tell
something about the
reliability of the
approximations that will be
used in the study of solids.
The necessary quadratic
equations can be solved to
obtain the molecular orbital
energies in terms of the
matrix elements and values
for all matrix elements can be
obtained from Tables 2-1 and
2-2. This gives the one-
electron energies listed in
Table 1-1, where the bond
lengths (distance between the
two nuclei) are also listed.
For comparison with these
values, results of full-scale
self-consistent molecular
orbital calculations are listed




in parentheses. The solid state
matrix elements give a very
good semi-  quantitative
account of the occupied states
(which lie below the shaded
area) for the entire range of
homopolar molecules; there
are major errors only for the
iog levels in 02 and F2. The
empty levels above (shaded)
are not well given. Neither
will the empty levels be as
well given as the occupied
ones in the description of
solids in terms of simple
LCAOQ theory. This degree of
success in applying solid state
matrix elements outside the
realm of solids, to diatomic
molecules, gives confidence
in their application in a wide
range of solid state problems.
Heteropolar Bonds

Bonding of diatomic
molecules in  which the
constituent atoms are
different can be analyzed
very directly, and only one or
two points need be made. The
n states in heteropolar
diatomic bonding are
calculated just as the simple
polar bond was. In each case
only one orbital on each atom
Is involved. A polarity can be
assigned to these bonds, just
as it was in Section I'D.
TABLE 1-1

One-electron  energies in
homopolar diatomic




molecules, as obtained by
using solid state matrix

elements. Values in
parentheses are from accurate
molecular orbital

calculations. Shading denotes
empty orbitals. Energies are
inev.

SOURCES of data in
parentheses: Li2, Be2, c2, Nj,
and F2 from Ransil (1960);
B2 from Padgett and Griffing
(1959); 02 from Kotani,
Mizuno, Kayama, and
Ishiguro (1957); all reported
in Slater (1968).

There is, however, a
complication in the treatment
of the O bonds. Because the
states are no longer purely
gerade and ungerade, the four
simultaneous equations
cannot be reduced to two sets
of two. In a diatomic
molecule this would not be
much of a complication, but it
IS very serious in solids.
Fortunately, for many solids
containing a bonds, hybrid
basis states can be made from
s and p states, and these can
be treated approximately as
independent  pairs, which
reduces the prob-lem to that
of finding two unknowns for
each bond. In other cases,
solutions can be
approximated by wuse of
perturbation  theory. The
approximations  that are




appropriate in solids will
often be very different from
those appropriate for diatomic
molecules. Therefore, we will
not discuss the special case of
o-bonded  hetero-  polar
molecule.

PROBLEM 1-1 Elementary
guantum mechanics

An electron in a hydrogen
atom has a potential energy,
— e2/V. The wave function
for the lowest energy state is
\j/(r) = Ae~rla°

where a0 is the Bohr radius,
a0 = h2/me2, and A is a real
constant.

(@) Obtain A such that the
wave function is normalized,
ereée}=1

(b) Obtain the expectation
value of the potential energy,
(€\ Vill/).

(c) Calculation of the
expectation value of the
Kinetic energy,

K.EANVINX

is trickier because of the
infinite curvature at /» = 0. By
partial integration in Eq. (1-
3), an equivalent form is
obtained:

Evaluate this expression to
obtain K.E.

(d Verify that the
expectation value of the total
energy, <|//| viiil} + K.E. is a
minimum with respect to
variation of 00. Thus a
variational solution of the




form e~',r would have given
the correct wave function.

(e)  Verify that this i/(r) is
a solution of Eq. (1-5).
PROBLEM 1-2  Atomic
orbitals

The hydrogen 2s and 2p
orbitals can be written

and

(see Schiff, 1968, p. 94), and
p orbitals can also be written
with X replaced by V and by
z. All four hydrogen orbitals
have the same energy, —
e2/(8flc).

Approximate the lithium 2,5
and 2p orbitals by the same
functions and approximate
the lithium potential by —
e2/r + ucore(r), where
Calculate the expectation
value of the energy of the 2s
and 2p orbitals. The easiest
way may be to calculate
corrections to the — e2/(8a0)
value.

This gives the correct
qualitative picture of the
lithium valence states but is
guantitatively Inaccurate.
Good quantitative results can
be obtained by using forms
such as are shown above and
varying the parameters in the
exponents. Such variational
forms are called “ Slater
orbitals.”

PROBLEM 1-3 Diatomic
molecules

For c2, obtain the O states for




the  homopolar  diatomic
molecule (see Fig. 1-11), by
using the matrix elements
from the Solid State Table, at
the back of the book, or from
Tables 2-1 and 2-2, in
Chapter 2. Writing

the equations analogous to
Eq. (2-2) become

Solutions will be even or odd,
by symmetry, so there can be
solutions with u2 = Ui and
w4 = —u3, and the above
reduce to two equations in
two unknowns. Solve them
for E. Then, solve again with
If2=—1IITand «4 =u3.
Confirm the values of these
energies as given in Table 1-1
for c2.

The lowest state contains
comparable contributions
from the s and p orbitals.
What is the fraction of s
character, that is, (ui + uiyiui
+ui+ui+ul)l

CHAPTER 2

Electronic Structure of Solids
SUMMARY

In solids, atomic valence
levels Dbroaden into bands
comprising as many states as
there are atoms in the solid.
Electrons in these band states
are  mobile, each electron
state being characterized by a
momentum p or wave number
k = p/tt that is restricted to a
Brillouin Zone. If each atom
in the solid has only four




neighboring  atoms,  the
atomic valence orbitals can
be combined to form bond
orbitals between each set of
neighbors, and two electrons
per bond can stabilize such an
arrangement of atoms. In
such  covalent structures,
bands of states based upon
the bond orbitals will be fully
occupied by electrons but
other bands will be empty.
The bonds may be symmetric
or polar. The covalent
structure will not be stable if
there are not two electrons
per bond, if the bond energy
Is too small, or if the bond is
too polar. Under these
circumstances the lattice will
tend to collapse to a denser
structure. It may be an ionic
crystal, which is a particularly
stable arrangement, if by
redistributing the electrons it
can leave every atomic shell
full or empty. Otherwise it
will be metallic, having bands
of states that are only
partially occupied.

If the electron states are
represented by linear
combinations  of  atomic
orbitals, the electron energy
bands are found to depend on
a set of orbital energies and
Interatomic matrix elements.
Fitting these to accurate
bands suggests that atomic
term values suffice for the




orbital energies and that
nearest-neighbor interatomic
matrix elements scale with
bond- length d from system to
system as d~2. This form, and
approximate coefficients, all
follow from the observation
that the bands are also
approximately given by a
free-electron approximation.
Atomic term values and
coefficients determining
interatomic matrix elements
are listed in the Solid State
Table and will be used in the
study of covalent and ionic
solids.

In this chapter we give a very
brief description of solids,
which is the principal subject
of the book. The main goal is
to fit solids into the context of
atoms and molecules. In
addition, we shall carefully
formulate the energy band in
the simplest possible case and
study the behavior of
electrons in energy bands.

2- A Energy Bands
When many atoms are
brought together to form a
solid, the number of electron
states is conserved, just as in
the formation of diatomic
molecules. Likewise, as in
diatomic molecules, the one-
electron states for the solid
can, to a reasonable
approximation, be written as
LCAQO’s. However, in solids,




the number of basis states is
great. A solid cube one
centimeter on an edge may
contain 1023 atoms, and for
each, there is an atomic s
orbital and three p orbitals. At
first glance it might seem that
such a problem, involving
some 4 X 1023 equations,
could not be attacked.
However, the simplicity of
the crystalline solid system
allows us to proceed
effectively and accurately. As
the atoms are brought
together, the atomic energy
levels split into bands, which
are analogous to the states
illustrated  for  diatomic
molecules in Fig. 1-12. The
difference is that rather than
splitting into a single bonding
and a single antibonding
state, the atomic levels split
into an entire band of states
distributed between extreme
bonding and antibonding
limits.

To see how this occurs, let us
consider the simplest
Interesting case, that of
cesium chloride. The
structure of CsCl is shown in
Fig. 2-1,a. The chlorine
atoms, represented by open
circles, appear on the comers
of a cube, and this cubic array
Is repeated throughout the
entire crystal. At the center of
each cube is a cesium atom




(at the body-center position
il the cube). Cesium chloride
IS very polar, so the occupied
orbitals lie almost entirely
upon the chlorine atoms. As a
first approximation we can
say that the cesium atom has
given up a valence electron to
(@) Crystal structure (b)
Brillouin Zone

FIGURE 2-1

(@) A unit cube of the cesium
chloride crystal structure, and
(b) the corresponding
Brillouin Zone in wave
number space.

fill the shell of the chlorine
atom, which becomes a
charged atom, called an ion.
Thus we take chlorine 3s
orbitals and 3p orbitals as the
basis states for describing the
occupied states. Furthermore,
the chlorine ions are spaced
far enough apart that the s
and p states can be considered
separately, as was true at
large inter- nuclear distance d
in Fig. 1-12. Let us consider
first the electron states in the
crystal that are based upon
the chlorine atomic 3s
orbitals.

We define an index i that
numbers all of the chlorine
jons in the crystal. The
chlorine atomic s state for
each ion is written | Si). We
can approximate a crystalline
state by




The variational calculation
then leads immediately to a
set of equations, in analogy to
Eg. (1-26):

It is convenient at this stage
to avoid the complications
that arise from consideration
of the crystalline surface, by
introducing periodic
boundary conditions. Imagine
a crystal of chlorine ions that
Is Ni ions long in the x-
direction, N2 long ill the ~-
direction, and N3 long in the
z-direction. The right surface
of the crystal is connected to
the left, the top to the bottom,
and the front to the back. This
is difficult to imagine in three
dimensions, but in one
dimension such a structure
corresponds to a ring of ions
rather than a straight segment
with two ends. Closing the
ring adds an Hij matrix
element coupling the states
on the end ions. Periodic
boundary conditions greatly
simplify the problem
mathematically; the only
error that is introduced is the
neglect of the effect of
surfaces, which is beyond the
scope of the discussion here.
The approximate description
of the crystalline state, Eq. (2-
1), contains a basis set of Np
= N1N2 N3 states (for the Np
pairs of ions), and there are
Np solutions of Eq. (2-2).




These solutions can be
written down directly and
verified by substitution into
Eq. (2-2). To do this we
define a wave number that
will be associated with each
state:

(2-3)

where Iii, n2, and n3 are
integers such that —Ni/2
<nx< Ni/2, .and X, vy, and
....are units vectors in the
three perpendicular
directions, as indicated in Fig.
2-1,b. Then for each Kk
allowed by Eq. (2-3), we can
write the coefficient Uj in the
form

Here the r7- = (ml X + m2y +
m3 z )a are the positions of
the ions. We see immediately
that there are as many values
of k as there are chlorine
ions; these correspond to the
conservation of  chlorine
electron states. We also see
that the wave functions for
states of different k are
orthogonal to each other.
Values for k run almost
continuously over a cubic
region of wave number space,
— n/a < kx < n/a, — n/a <ky
< n/a, and — n/a < kz < %l/a.
This domain of k is called a
Brillouin Zone. (The shape of
the Brillouin Zone, here
cubic, depends wupon the
crystal structure.) For a
macroscopic crystal the Ni




are very large, and the change
in wave number for unit
change in «j is very tiny. Eq.
(2-4) is an exact solution of
Eq. (2-2); however, we will
show it for only the simplest
approximation, namely, for
the assumption that the |sf)
are sufficiently localized that
we can neglect the matrix
element Hji = |S() unless (1)
two states in question are the
same (/' = j) or (2) they are
from nearest-neighbor
chlorine ions. For these two
cases, the magnitudes of the
matrix elements are, in
analogy with the molecular
case,

In cesium chloride the main
contribution to v2 comes
from cesium ion states acting
as intermediaries in a form
that can be obtained from
perturbation theory. We need
not be further concerned here
with the origin of v2 . (We
shall discuss the ionic crystal
matrix elements in Chapter
14.) For a particular value of j
in Eq. (2-2), there are only
seven values of i that
contribute to the sum: i=j
numbered as 0, and the six
nearest-neighbor chlorine s
states. The solution (valid for
any i) is

This energy varies with the
wave number over the entire
Brillouin Zone of Fig. 2-1,b.




The results are customarily
displayed graphically along
certain lines within that
Brillouin Zone. For example,
Fig. 2-2,a shows a variation
along the lines rx and TK of
Fig. 2-1,b.

The calculation of bands
based on p states proceeds in
much the same way. In
particular, if we make the
simplest possible
assumption—that each px
orbital is coupled by a matrix
element V'2 only to the px
orbitals on the nearest
neighbors in the x-direction
and to no other p orbitals, and
similarly for the py and pz
orbitals— then the calculation
can be separated for the three
types of states. (Otherwise it
would be necessary to solve
three simultaneous equations
together.) For the states based
upon the px orbitals,

For py orbitals and pz
orbitals, the second term is
2VV2 COS kya and 1V'2 COS
kza, respectively. The three
corresponding p bands are
also shown in Fig. 2-2,a. In
later

discussions we shall see that
by the addition of matrix
elements between orbitals
that are more distant it is
possible to obtain as accurate
a description of the true bands
as we like; for the present,




crude approximations are
sufficient to illustrate the
method.

Can we construct other bands,
for other orbitals, such as the
cesium s orbital? It turns out
that states that are not
occupied in the ground state
of the crystal are frequently
not well described in the
simplest LCAO descriptions,
but an approximate
description can be made in
the same way.

How would the simple bands
change if we could somehow
slowly eliminate the strong
atomic potentials that give
rise to the atomic states upon
which the bands are based?
The answer is given in Fig. 2-
2,b. The gaps between bands
decrease, including the gap
between the cesium bands
(not shown in Fig. 2-2,a) and
the chlorine bands. The
lowest bands have a
recognizable similarity to
each other in these two
extreme limits. The limit
shown in Fig. 2-2,b is in fact
the limit as the electrons
become completely free; the
lowest band there is given by
the equation for free-electron
Kinetic energy, E —
ti2k2/2m. The other bands in
Fig. 2-2,b are also free-
electron bands but are
centered at different wave




numbers (e.g., as E = h2(k —
g)2/2m), in keeping with the
choice to represent all states
by wave numbers in the
Brillouin Zone. Such free-
electron descriptions will be
appropriate later when we
discuss metals; for cesium
chloride, these descriptions
are not so far from LCAO
descriptions as one might
have thought, and in fact the
similarity will provide us, in
Section 2-D, with
approximate  values  for
interatomic matrix elements
such as v2 and V'l.

Since there are as many states
in each band as there are
chlorine ions in the crystal,
the four bands of Fig. 2-2,a,
allowing both spins in each
spatial state, can
accommodate  the  seven
chlorine electrons and one
cesium electron. All states
will be filled. This is the
characteristic feature of an
insulator; the state of the
system cannot be changed
without exciting an electron
with several electron volts of
energy, thus transferring it to
one of the empty bands of
greater energy. For that
reason, light with frequency
less than the difference
between bands, divided by h,
cannot be absorbed, and the
crystal will be transparent.




Similarly, currents cannot be
induced by small applied
voltages. This absence of
electrical conductivity results
from the full bands, not from
any localization of the
electrons at atoms or in
bonds. It is important to
recognize that bands exist in
crystals and that the electrons
are in states of the crystal just
as, in the molecule 02,
electrons form bonding and
antibonding molecular states,
rather than atomic states at
the individual atoms.

If, on the other hand, the
bands of cesium chloride
were as in Fig. 2-2,b, the
eight electrons of each
chlorine-cesium atom pair
would fill the states only to
the energy Ep shown in the
figure; this is called the Fermi
energy. Each band would
only be partly filled, a feature
that, as we shall see, is
characteristic of a metal.

2- B Electron Dynamics
In circumstances where the
electron energy bands are
neither completely full nor
completely  empty, the
behavior of individual
electrons in the bands will be
of interest. This is not the
principal area of concern in
this text, but it is important to
understand electron dynamics
because this provides the link




between the band properties
and electronic properties of
solids.

Consider a Brillouin Zone,
such as that defined for CsCl,
and an energy band E(k),
defined within that zone.
Further, imagine a single
electron within that band. If
its wave function is an energy
eigenstate, the time-
dependent Schroedinger
equation, Eq. (1-17), tells us
that

The magnitude of the wave
function and therefore also
the probability density at any
point do not change with
time. To discuss electron
dynamics we must consider
linear combinations of energy
eigenstates  of  different
energy. The  convenient
choice is a wave packet. In
particular, we construct a
packet, using states with
wave numbers near kO and
parallel to it in the Brillouin
Zone:

Taking the form of \i)h from
Egs. (2-1) and (2-3), and
treating k - kO as small, a
little algebra shows that at t =
0, Eq. (2-8) corresponds to
the state il/ko modulated by a
gaussian peak centered at r =
0. Furthermore, writing £(Kk)
= E(k0) + (dE/dk) m (k - kO0),
we may see that the center of




the gaussian moves with a
velocity

Thus it is natural to associate
this velocity with an electron
in the state ljjko. Indeed, the
relation is consistent with the
expectation value of the
current operator obtained for
that state.

We are also interested in the
effects of small applied
fields: imagine the electron
wave packet described above,
but now allow a weak, slowly
varying potential F(r) to be
present. The packet will work
against this potential at the
rate V < dv/dr. This energy
can only come from the band
energy of the electron,
through a change, with time,
of the central wave number
kO of the packet:

This is consistent with the
relation

This can, in fact, be
generalized to  magnetic
forces by replacing —dv/dx
by the Lorenz force, — e[—
¥<p + (v/c) X H],

Egs. (2-9) and (2-11)
completely  describe  the
dynamics of electrons in
bands wherever it is possible
to think in terms of wave
packets; that is, whenever the
fields are slowly varying
relative to interatomic
spacings. Notice that if we
think of fik as the canonical




momentum, then the band
energy, written in terms of p
= hk, plus the potential
energy, F(r), play precisely
the role of the classical
Hamiltonian, since with these
definitions, Egs. (2-9) and (2-
11), are precisely Hamilton’s
equations. Thus, in terms of
the energy bands E(k), we
may proceed directly by
using Kinetic theory to
examine the transport
properties of solids, without
thinking again of the
microscopic theory that led to
those bands. We may go even
further and use this classical
Hamiltonian to discuss a
wave function for the packet
itself, just as we constructed
wave functions for electrons
in Chapter 1. This enables us
to treat band electrons bound
to impurities in the solid with
methods similar to those used
to treat electrons bound to
free atoms; however, it is
imperative to keep in mind
that the approximations are
good only when the resulting
wave functions vary slowly
with position, and therefore
their usefulness would be
restricted to weakly bound
impurity states.

Let us note some qualitative
aspects of electron dynamics.
If the bands are narrow in
energy, electron velocities




will be small and electrons
will  behave like heavy
particles. These qualities are
observed in insulator valence
bands and in transition-metal
d bands. In simple metals and
semiconductors the bands
tend to be broader and the
electrons are more mobile; in
metals the electrons typically
behave as free particles with
masses near the true electron
mass.

One question that might be
asked is: what happens when
an electron is accelerated into
the Brillouin Zone surface?
The answer is that it jumps
across the zone and appears
on the opposite face. It is not
difficult to see from Eq. (2-3)
that if, for example, m; is
changed by Ni
(corresponding to going from
a wave number on one zone
face to a wave number on the
opposite face) the phase
factors change by e2”'; the
states are therefore identical.
In general, equivalent states
are found on opposite zone
faces, and an electron
accelerated into one face will
appear at the opposite face
and continue to change its
wave number according to
Eg. (2-11).

2-  C Characteristic Solid
Types

Before discussing in detail




the wvarious categories of
solids, it is helpful to survey
them in general terms. This is
conveniently done by
conceptually constructing the
semiconductor silicon from
free atoms. In the course of
this, it will become apparent
how the metallicity of a
semiconductor varies with
row number in the periodic
table. With the general model
as a basis we can also
construct compounds  of
increasing polarity, starting
with silicon or germanium
and moving outward in the
same row of the periodic
table. Metallicity and polarity
are the two principal trends
shown by compounds and
will provide a suitable
framework for the main body
of our discussions.

Imagine silicon atoms
arranged as in a diamond
crystal structure but widely
spaced. This structure will be
discussed in the next chapter;
a two-dimensional analogue
of it is shown in Fig. 2-3. At
large internuclear distance,
two electrons are on each
individual atom in s states
and two are in p states. As the
atoms are brought together,
the atomic states broaden into
bands, as we have indicated.
(There are complications,
unimportant here, if one goes




beyond a one-electron
picture.) The s bands are
completely full, whereas the p
bands can accommodate six
electrons per atom and are
only one third full. This
partial filling of bands is
characteristic of a metal. As
the atoms are brought still
closer together, the
broadening bands finally
reach each other, as shown in
Fig. 2-3, and a new gap opens
up with four bands below and
four above. The bonding
bands below (called valence
bands) are completely full
and the antibonding bands
above (called con-duction
bands) are completely empty;
now the system is that of an
insulator or, when the gap is
small, of a semiconductor. In
Chapter 1, it was noted that a
crossing of bonding and
antibonding states does not
occur in the simple diatomic
molecules, but that it can in
larger molecules and in
solids, as shown here.

The qualitative change in
properties associated with
such crossing is one of the
most  important  concepts

necessary for an
understanding of chemical
bonding, yet
FIGURE 2-3

The formation of bands in a
homopolar tetrahedral




semiconductor as the atoms
are brought together.
Internuclear distance
decreases to the right.

it has not Dbeen widely
examined until  recently.
Particular attention has been
brought by Woodward and
Hoffmann (1971) in their
discussion  of  reactions
between molecules. In that
context, Woodward and
Hoffmann found that when
bonding and antibonding
states are equally occupied, as
in Be2, discussed earlier, no
bonding energy is gained and
the atoms repel each other.
Only when the atoms are
close enough that upper
bonding levels can surpass or
cross the energy of the lower
antibonding levels above can
bonding result. In some such
cases (not Be2) a stably
bonded system can Dbe
formed, but an energy barrier
must be overcome in order to
cause the atoms to bond.
Reactions in which energy
barriers must be overcome
are called “symmetry
forbidden reactions.” (See
Woodward and Hoffmann,
1971, p. Off, for a discussion
of 2C2H4 -> C4H8.) The
barrier remains, in fact, when
there is no symmetry. In
silicon, illustrated in Fig. 2-3,
the crossing occurs because




high symmetry is assumed to
exist in the atomic
arrangement. Because of this
symmetry, the matrix
elements of the Hamiltonian
are zero between wave
functions of states that are
dropping in energy and those
that are rising (ultimately to
cross each other). If, instead,
the silicon atoms were to
come

m4  Increasing interatomic
distance (d)

FIGURE 2-4

The variation of energy of
two levels which cross, as a
function of atomic spacing d,
In a symmetric situation, but
do not cross when there is not
sufficient symmetry.

together as a distorted lattice
with  no symmetry, the
corresponding matrix
elements of the Hamiltonian
would not be zero, and
decreasing and increasing
energy levels would not cross
(see Fig. 2-4).

In an arrangement of high
symmetry, a plotting of total
energy as a function of d may
show a cusp in the region
where electrons switch from
bonding to antibonding states;
a clear and abrupt qualitative
change in behavior coincides
with this cusp region. In an
unsymmetric  arrangement,
change in total energy as a




function of d is gradual but at
small or at large internuclear
distances, energies  are
indistinguishable from those
observed in  symmetric
arrangements. Thus, though
the crossing is artificial (and
dependent on path), the
qualitative difference, which
we associate with covalent
bottcling, is not. For this
reason, it is absolutely
essential to know on which
side of a diagram such as Fig.
2-3 or Fig. 2-4 a particular
system lies. For example, in
covalent silicon, bonding-
antibonding splitting is the
large term and the sp splitting
is the small one. That
statement explains why there
IS a gap between occupied
states and unoccupied states,
which makes covalent silicon
a semiconductor, and
knowing this guides us in
numerical  approximations.
Similarly, in metals, bonding-
antibonding splitting is the
small term and the sp splitting
the large term; this explains
why it is a metal and guides
our numerical approximations
in metals.

If we wished to make full,
accurate machine calculations
we would never need to make
this distinction; we could
simply look at the results of
the full calculation to check




for the presence of an energy
gap. Instead, our methods are
designed to result in intuitive
understanding and
approximate calculations of
properties, which will allow
us to guess trends without
calculations in some cases,
and which will allow us to
treat complicated compounds
that would otherwise be
intractable by full, accurate
calculation in other cases.

The diagram at the bottom of
Fig. 2-3 was drawn to
represent silicon but also,
surprisingly, illustrates the
homopolar series of
semiconductors c, Si, Ge, and
Sn. The internuclear distance
iIs smallest in diamond,
corresponding to the largest
gap, far to the right in the
figure.  The internuclear
distance  becomes larger
element by element down the
series,  corresponding  to
progression leftward in the
figure to tin, for which the
gap is zero. (Notice that in a
plot of the bands, as in Fig. 2-
2, the gap can vary with wave
number. In tin it vanishes at
only one wave number, as
will be seen in Chapter 6, in
Fig. 6-10.) Nonetheless we
must regard each of these
semiconductors—even tin—
as a covalent solid in which
the dominant energy is the




bonding-antibonding
splitting. We can define a
“metallicity” that increases
from ¢ to Sn, reflecting a
decreasing ratio of bonding-
antibonding splitting to sp
splitting; nevertheless, if the
structure is tetrahedral, the
bonding-antibonding splitting
has won the contest and the
system is covalent.

The discussion of Fig. 2-3 fits
well  with the LCAO
description but the degree to
which a solid is covalent or
metallic is independent of
which basis states are used in
the calculation. Most of the
analysis of covalent solids
that will be made here will be
based upon linear
combinations  of  atomic
orbitals, but we also wish to
understand them in terms of
free-electron-like  behavior.
(These two extreme
approaches are illustrated for
cesium chloride in Fig. 2-2.)
Free-electron-like behavior is
treated in Chapter 18, where
two physical parameters will
be designated, one of which
dominates in the covalent
solid and one of which
dominates in the metallic
solid. It can be useful here to
see how these parameters
correspond to the concepts
discussed so far.

In Fig. 2-2, the width of the




bands, approximately Ep —
Es, corresponds to the kinetic
energy, £F, of the highest
filled states. The bonding-
antibonding splitting
similarly corresponds to the
residual splitting between
bands which was suppressed
completely in Fig. 2-2,b. For
metals, this residual splitting
IS described by a
pseudopotential. In metals,
the small parameter is the
pseudopotential divided by
the Fermi energy
(corresponding to the ratio of
bonding-antibonding splitting
to sp splitting, or the
reciprocal of the metallicity).
In the covalent solids, on the
other hand, we would say that
the pseudopotential is the
dominant aspect of the
problem and the Kinetic
energy can be treated as the
small correction. In fact, in
Chapter 18 the
pseudopotential approach will
be applied to simple
tetrahedral  solids;  there,
treating Kinetic energies as
small compared to the
pseudopotential leads to a
simple description of the
covalent bond in which a one-
to-one correspondence can be
obtained  between  matrix
elements of the
pseudopotential ~ (that s,
between plane waves) and




matrix elements of the
Hamiltonian between atomic
states. The correspondence
between these two opposite
approaches is even more
remarkable than the similarity
between the LCAO and free-
electron bands in Fig. 2-2,
though it is the latter
similarity which will provide
us with LCAO matrix
elements.

Now, as an introduction to
polar semiconductors, let us
follow the variation of
electronic structure,
beginning with an elemental
semiconductor and moving to
more polar solids. For this,
germanium is a better starting
point than silicon, and in
order of increasing polarity
the series is Ge, GaAs, ZnSe,
and CuBr. The total number
of electrons in each of these
solids is the same (they are
isoelectronic) and the
structure is the same for all;
they differ in that the nuclear
charge increases on one of the
atoms (the anion) and
decreases on the other (the
cation). The qualita-

FIGURE 2-5

Change in the bands as a
homopolar semiconductor is
made increasingly polar, and
then as the two atom types
are made more alike without
broadening the levels.




tive variation in electronic
structure in this series is
illustrated in Fig. 2-5,a. Bear
in mind that even in nonpolar
solids there are two types of
atomic sites, one to the right
and one to the left of the
horizontal bonds in the figure.
In polar solids the nuclear
charge on the atom to the
right is increased, compound
by compound. This will tend
to displace the bond charges
(electron density) toward the
atom with higher nuclear
charge (center diagram in Fig.
2-5,a) and, in fact, the corre-
sponding transfer of charge in
most cases is even larger than
the change in nuclear charge,
so the atom with greater
nuclear charge should be
thought of as negative; hence,
the term anion is used to
denote the nonmetallic atom.
At high polarities most of the
electronic charge may be
thought of as residing on the
nonmetallic atom, as shown.

The most noticeable change
in the energy bands of Fig. 2-
5,b, as polarity increases, is
the opening up of a gap
between the valence bands as
shown. There is also a
widening of the gap between
valence and conduction bands
and some broadening of the
valence band. In extremely
polar solids, at the center of




the figure, the valence band,
to a first approximation, has
split into an anion s band and
three narrow anion p bands.
The conduction bands in this
model—the unoccupied
bands—also split into s bands
and p bands, but in a real
crystal of high polarity, the
bands for unoccupied orbitals
remain very broad and even
free-electron-like.

We can complete the
sequence of changes in the
model shown in Fig. 2-5 by
pulling the atoms apart to
obtain isolated free atom
energies. Perhaps the simplest
path is that shown on the
right side of Fig. 2-5, where
the metallic and nonmetallic
atoms become more alike and
where the individual energy
bands remain narrow. Where
the levels cross, electrons of
the anion fill available
orbitals of the cation; the
crossing results in a reduction
of the atomic charges to zero.
By comparing Fig. 2-5 with
Fig. 2-3, we can see that there
IS no discontinuous change in
the qualitative nature of the
electronic structure in going
from homopo- lar to highly
polar solids of the same
crystal structure (Fig. 2-5),
but that discontinuity is
encountered in going from
the atomic electronic




structure to the covalent one
(Fig. 2-3). Properties vary
smoothly with polarity over
the entire range. This feature
has been apparent for a long
time and led Pauling to define
lonicity in terms of energies
of formation in order to
provide a scale for the trend
(Pauling, 1960). Coulson et
al. (1962) redefined ionicity
in terms of an LCAO
description much like the one
we shall use in Chapter 3.
Phillips (1970) gave still a
third definition in terms of the
dielectric  constant.  The
formula for polarity of a
simple bond, introduced in
Eg. (1-37), is essentially
equivalent to the ionicity
defined by Coulson, but the
ionicities defined by Pauling
and by Phillips are to a first
approximation proportional to
the square of that polarity.
We will use the term polarity
to describe a variation in
electronic structure in
covalent solids, and the
particular values defined by
Eqg. (1-37) will directly enter
the calculation of some
properties. We do not use
polarity to interpolate
properties from one material
to another. However, such
interpolative approaches are
commonly used, and degree
of ionicity or polarity is




frequently used to rationalize
trends in properties.
Therefore it is best to
examine  that  approach
briefly.  The  distinction
between these two
approaches is subtle but of
fundamental importance.

We have seen that there are
trends with polarity and with
metallicity among the
tetrahedral solids. One of the
trends is the decrease, with
increasing metallicity and
increasing polarity, of the
angular rigidity that stabilizes
the open tetrahedral structure.
Thus, if either increases too
far, the structure collapses to
form a close- packed
structure. When this happens,
the new system has a
qualitatively different
electronic  structure, and
different  concepts and
approximations become
appropriate. We may think of
this as analogous to a phase
diagram, as illustrated in Fig.
2-6. If a combination of
atoms (e.g., lithium and
flourine) is too polar, a close-
packed rocksalt structure is
formed. LiF is an ionic
crystal and most frequently
the best initial approximation
to the electronic structure is
based on independent ions,
which  we used in the
discussion of the cesium




chloride energy bands. lonic
solids can be distinguished
from covalent solids by their
characteristic crystalline
structures, a topic that will be
taken up later.

When the metallicity is too

great, a close-packed
structure again becomes more
Polarity

FIGURE 2-6

A schematic phase diagram
indicating the three
qualitatively different types
of solids discussed in the
book. The phase boundaries
are topologically correct but
details of shape are only
schematic.

Stable. In this case the
electronic structure ordinarily
approximates that of a free-
electron gas and may be
analyzed  with  methods
appropriate to free-electron
gases. Again, the crystal
structure is the determining
feature for the classification.
When tin has a tetrahedral
structure it is a covalent solid,
when it has a close- packed
white-tin structure, it is a
metal. Even silicon and
germanium, when melted,
become close-packed and
liquid metals.

To complete the phase
diagram,” there must also be
a line separating metallic and
lonic systems. Materials near
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this line are called
intermetallic compounds;
they can lie on the metallic
side (an example is Mg2Pb)
or on the ionic side (for
example, CsAu).
Consideration of intermetallic
compounds takes the trends
far beyond the isoelectronic
series that we have been
discussing.

The sharp distinction between
lonic and covalent solids is
maintained in a
rearrangement of the periodic
table of elements made by
Pantelides and  Harrison
(1975). In this table, the alkali
metals and some of their
neighbors are transferred to
the right (see Fig. 2-7). The
elements of the carbon
column (column 4) and
compounds made  from
elements to either side of that
column (such as GaAs or
CdS) are covalent solids with
tetrahedral structures.
Compounds made  from
elements to either side of the
helium column of rare gases
(such as KC1 or CaO) are
ionic compounds with
characteristic ionic structures.
A few ionic and covalent
compounds do not fit this
correlation; notably, MgO,
AgF, AgCl, and AgBr are
jonic compounds, and MgS
and MgSe can occur in either




lonic or covalent structures.
(Notice that Mg is found both
in column 2 and column 10).
The interesting isoelectronic
series for ionic compounds
will be those such as Ar,
KC1, CaS, and ScP, obtained
from argon Dby transferring
protons between argon nuclei.
In this case the ion receiving
the proton is the metallic ion
and the electronic structure is
thought of as a slightly
distorted rare gas structure.
This model leads to a theory
of ionic-compound bonding
that is even simpler than the
bonding theory for covalent
solids.  The  Pantiledes-
Harrison rearrangement of the
periodic table is used as the
format for the Solid State
Table, where the parameters
needed for the calculation of
properties have been
gathered.

2- D Solid State Matrix
Elements

Almost all of the discussion
of covalent and ionic solids in
this book is based upon
descriptions of electron states
as linear combinations of
atomic orbitals. In order to
obtain numerical estimates of
properties we need numerical
values for the  matrix
elements giving rise to the
covalent and polar energies
for the properties being




considered. There is no best
choice for these parameters
since a trade-off must be
made between simplicity (or
universality) of the choice
and accuracy of the
predictions that result when
they are used. Clearly if
different values are used for
each property of each
material, exact values of the
properties can be
accommodated. We shall
follow a procedure near the
opposite extreme, by
introducing four universal
parameters in terms of which
all interatomic matrix
elements between s and p
states for all systems can be
estimated. We shall also use a
single set of atomic s and p
orbital energies throughout.
These are the principal
parameters needed for the
entire range of properties,
though the accuracy of the
corresponding predictions is
limited.

One might at first think that
Interatomic matrix elements
could be calculated by using
tabulated atomic  wave
functions and  potentials
estimated for the various
solids. Such approaches have
a long history of giving poor
numerical results and have
tended to discredit the LCAO
method itself. However, the




difficulty seems to be that
though true atomic orbitals do
not provide a good basis for
describing electronic
structure, there are atomiclike
orbitals that can provide a
very good description. One
can therefore obtain a useful
theory by using LCAO
formalism but obtaining the
necessary matrix elements by
empirical or semiempirical
methods.

One of the oldest and most
familiar such approaches is
the  “Extended  Hueckel
Approximation”  (Hoffman,
1963.) Let us take a moment
to examine this approach,
though later we shall choose
an alternative scheme.
Detailed rationalizations of
the approach are given in
Blyholder and  Coulson
(1968), and in Gilbert (1970,
p. 244); a crude intuitive
derivation will suffice for our
purposes, as follows. We seek
matrix elements of the
Hamiltonian between atomic
orbitals on adjacent atoms,
(p\H\cc). If | a) were an
eigenstate of the Hamiltonian,
we could replace HI a) by
Eala), where £a is the
eigenvalue. Then if the
overlap (,P\oc) is written

Spa, the matrix element
becomes EaSpa. This,
however, treats the two




orbitals differently, so we
might use the average instead
of Ea. Finding that this does
not give good values, we
introduce a scale factor G, to
be adjusted to fit the
properties of heavy
molecules; this leads to the
extended Hueckel formula:

(.PiHiu) = GSpa(ep + ea)/2.

(2-12)
These matrix elements are
substituted into the

Hamiltonian matrix of Eq. (2-
2) for a molecule, or a cluster
of atoms, and the matrix is
diagonalized. A value of G =
1.75 is usually taken; the
difference from unity
presumably, arises from the
peculiar manner in which
nonorthogonality IS
incorporated.

The  Extended  Hueckel
Approximation and a wide
range of methods that may be
considered as descendents of
it (e.g., the CNDO method—
Complete Neglect of
Differential Overlap) have
enjoyed considerable success
in  theoretical chemistry.
Some machine calculation is
required, first in determining
the parameters s from
tabulated wave functions or
numerical approximations to
them, and second in solving
the resulting simultaneous
equations, as at Eq. (2-2).




This difficulty is exacerbated
by the fact that s drops rather
slowly  with increasing
distance between atoms, so a
very large number of matrix
elements are required. The
computation required for any
given system is very small,
however, in comparison with
what is required to obtain
more  accurate  solutions.
Once an Extended Hueckel
Approximation has  been
made, direct machine
computations of any property
can be made and alternatives
to the simplest
approximations—e.g., Eq. (2-
12)— can be made which
improve agreement with the
experimental values. Such
improvements are described
in detail by Pople and
Beveridge (1970). Combining
descriptions of electronic
structure that are essentially
correct, with the use of high-
speed computers, and the
results of a number of years
of trial and error in correcting
the simplest approximations,
probably provide the most
accurate predictions of the
diverse properties of complex
systems that are presently
available. For isolated
properties, such as the energy
bands of solids, other
computer methods are much
more reliable and accurate.




The approach that will be
used in this text is different,
in that the description of
electronic structures is greatly
simplified to provide a more
vivid understanding of the
properties; numerical
estimates of properties will be
obtained with calculations
that can be carried through by
hand rather than machine. We
shall concentrate on the
“physics” of the problem. In
this context a semiempirical
determination  of  matrix
elements is appropriate. The
first attempt at this (Harrison,
1973c) followed Phillips
(1970) in obtaining the
principal matrix element v2
from the measured dielectric
constant. A second attempt
(Harrison and Ciraci,1974)

used the principal peak
in the optical reflectivity of
the covalent solids, which we
shall come to later, as the
basis for the principal matrix
element; this led to the
remarkable finding that v2
scaled from material to
material quite accurately as
the inverse square of the
interatomic distance, the bond
length d, between atoms. A
subsequent study of the
detailed form of valence
bands (Pantelides and
Harrison, 1975), combined
with v2 determined from the




peak in optical reflectivity,
gave a complete set of
interatomic matrix elements
for covalent solids with the
finding that all of them varied
approximately as d~2 from
material to material.

The reason  for  this
dependence recently became
very clear in a study of the
bands of covalent solids by
Froyen and Harrison (1979).
They took advantage of the
similarity of the LCAO bands
and  free-electron  bands,
noted in Fig. 2-2. By equating
selected energy differences
obtained in the two limits,
they derived formulae that
had this dependence for all of
the interatomic matrix
elements. We may in fact see
in detail how this occurs by
considering Fig. 2-2. The
lowest band, labelled s in Fig.
2-2,a, was given by Eqg. (2-5).
For k in an x-direction, it
becomes E(k) = es — 4V2 —
2V2 cos ka, varying by 4VZ
from r (where k = 0) to X
(where k = %/a). The free-
electron energy in Fig. 2-2,b
varies by (h2/2m)(n/a)2 over
the same region of wave
number space for the lowest
band. Thus, if both limiting
models are to be appropriate,
and therefore consistent with
each other, it must follow that
v2 = t]h2/{ma2) with rj =




7t2/8 = 1.23. This predicts the
dependence upon the inverse
square of interatomic distance
and a coefficient that depends
only upon crystal structure. A
similar comparison of the
second band gives the same
form with a different
coefficient for the matrix
element v'2 between p states.
This simplest model is not so
relevant, but it illustrates the
point nicely. Before going to
more relevant systems we
must define more precisely
the notation to be used for
general interatomic matrix
elements.

These matrix elements will be
important throughout the text;
they are specified here
following the conventions
used by Slater and Koster
(1954) and used earlier while
discussing  the  diatomic
molecule. In general, for a
matrix  element  <al|//|/j>
between orbitals on different
atoms we construct the vector
d, from the nucleus of the
atom of which | a) is an
orbital (the “ left ” atom) to
that of the atom of which 1/?)
is an orbital (the “right”
atom). Then spherical
coordinate  systems  are
constructed with the z-axes
parallel to d, and with origins
at each atom; the angular
form of the orbitals can be




taken as Y?(9, ¢) for the left
orbital and VI! (O', Q) for the
right orbital. The angular
factors depending upon ¢
combine to (Notice that the
wave function (a | is the
complex conjugate of | a).)
The integration over a gives
zero unless m' = m. Then all
matrix  elements  (a|H||S)
vanish unless rri = m, and
these are labelled by O, n, or
O (in analogy with s, p, d) for
m —1). 1, and 2 respectively.
Thus, for example, the matrix
element Vspa corresponds to
1=0,1=1, m=0. Slater and
Koster (1954) designated
matrix elements by enclosing
the indices within
parentheses; thus, the element
VWm used in this book and
their (Wm) are the same.

We saw how formulae for the
matrix elements can be
obtained by equating band
energies from LCAO theory
and from free-electron theory
in Fig. 2-2. Froye.l and
Harrison (1979) made the
corresponding treatment of
the tetrahedral solids, again
including only matrix
elements between nearest-
neighbor atoms. The form of
their results is just as found
for the simple cubic case
Notice that the subscript m is
a quantum number but the m
in the denominator




Dimensionless coefficients in
Eq. (2-13)  determining
approximate interatomic
matrix elements.

Theoretical values
Coefficient Simple cubic
structure  Tetrahedral
structure  Adjusted value*
NOTE: Theoretical values
(Froyen and Harrison, 1979)
were obtained by equating
band energies from | (\0 and
free-eiectron  theory, as
described in  the text.
Adjusted values (Harrison,
1976b, 1977a) were obtained
by fitting tile energy bands of
silicon and germanium; the
adjusted values appear in the
Solid State Table.
is the electron mass. The
length d is the internuclear
distance, equal to a in the
simple cubic structure. If d is
given in angstroms, this form
Is easily evaluated, using
h2/m = 7.62 eV-A2. In Table
2-1 we give the values of the
dimensionless  cnefficients
obtained by Froyen and
Harrison for both the simple
cubic and Id rahedral
structures. The calculation is
closely related to that just
carried through for the bands
of Fig. 2-2, and in fact, the
VSS<J matrix element for the
simple cubic case is just the
negative of the v2 value
evaluated there, leading to the




t]ssa = — 7t2/8. wv shall see
in Section 18-A exactly how

the other theoretical
coefficients listed were
obtained.

Motice that the coefficients
obtained for the tetrahedral
structure differ from those
obtained for the simple cubic
structure and indeed the
coefficients for any mu;
structure depend somewhat
upon which band energies are
used. However, the
differences are not great and
we shall neglect them. The
coefficients we shall use are
close to those given by
Froyen and Harrison (1979)
for the tetrahedral structure,
but were obtained somewhat
earlier by Harrison (1976b),
who adjusted tliL'm to give
the interatomic matrix
elements found by Chadi and
Cohen (1975) in fitting the
known energy bands of
silicon and germanium. The
average of the coefficients so
obtained for silicon and
germanium is listed in Table
2-1 in the column headed
“Adjusted,” and these are the
values listed in the Solid State
Table and used throughout
this text. Also listed in the
Solid State Table are forms
lor predicting matrix elements
involving atomic d states,
formulae  which will be




developed in Chapter 20.

The coefficients in Table 2-1
have been obtained entirely in
the context of nearest-
neighbor coupling between
states. They would have been
different if a

*For recent developments,
see the Preface to the Dover
Edition.

TABLE 2-2

Atomic term values from
Herman and Skillman (196.1).
or extrapolated from their
values.

Atomic term value (eV)
second-neighbor LCAO fit
had been used, for example,
and it would not therefore be
appropriate to use them if the
description of the bands were
to be extended to second-
neighbor interactions.

It will ordinarily be more
convenient in solids to use the
forms for angular
dependence, x/r, y/r, and z/r,
as in Eq. (1-20), rather than
the forms Y”’i(0, <p). Then in
order to obtain  matrix
elements involving these
orbitals, we need to expand
the

NOTE: These values appear
also in the Solid State Table.
p orbital in question in terms
of 17, which are defined with
respect to the coordinate
system discussed above. For
p orbitals this is quite simple.




For the simplest geometries it
leads to the identification of
matrix elements shown in the
upper four diagrams of Fig.
2-8. For arbitrary geometries
the result depends upon the
direction cosines giving the
vector d in the coordinate
system of X, y, and z; this is
illustrated at the bottom in
Fig. 2-8. The corresponding
transformations for d
FIGURE 2-8

The four types of interatomic
matrix elements entering the
study of s- and p-bonded
systems are chosen as for
diatomic molecules as shown
in Fig. 1-11. Approximate
values for each are obtained
from the bond length, or
internuclear distance, i/, by
VIj — riijtS/md2, with tiij
taking values given in Table
2-1 and in the Solid State
Table at the back of the book.
When p orbitals are not
oriented simply as shown ill
the upper diagrams, they may
be decomposed geometrically
as vectors in order to evaluate
matrix elements as illustrated
in the bottom diagrams. It can
be seen that the interatomic
matrix element at the bottom
right consists of cancelling
the contributions that lead to
a vanishing matrix element.
orbitals as well as p orbitals
will be given in detail in




Table 20-1, but for s and p
orbitals the simple vector
transformations illustrated in
Fig. 2-8 should be sufficient;
the results can be checked
with Table 20-1.

When we give the Froyen-
Harrison analysis in Chapter
18-A, we shall see that the
same procedure can give an
estimate of the energy
difference Ep — £s. It is of
the correct general magnitude
but fails to describe the
important trend in the energy
bands among the covalent
solids ¢, Si, Ge, and Sn.
Furthermore, it does not
provide a means of estimating
term-value differences such
as scp — e*“ in polar solids.
Thus, for these intra-atomic
parameters we shall use
calculated  atomic  term
values, which are listed in
Table 2-2. A comparison
shows them to be roughly
consistent with term values
obtained in the fit to known
bands done by Chadi and
Cohen (1975) for the polar
semiconductors as well as for
silicon and germanium.

This  particular set  of
calculated values (by Herman
and Skillman, 1963) was
chosen since the
approximations used in the
calculation were very similar
to those used in determining




the energy bands that led to
the parameters in Table 2-1.
The values would not have
differed greatly if they were
taken from Hartree-Fock
calculations (such values are
tabulated in Appendix A).
Values based on Hartree-
Fock calculations have the
advantage of giving good
values for d states. Therefore,
though the calculations in this
book are based upon the
Herman-Skillman values, for
some applications the
Hartree-Fock values may be
better suited.

Notice that as absolute
numbers the atomic energy
values have only limited
meaning in any  case.
Imagine, for example, that the
value Ep for oxygen correctly
gives the energy required to
remove an electron from an
isolated oxygen atom in
space. If this atom is brought
close to the surface of a metal
(or, almost equivalently, to
the surface of a covalent solid
with  a large dielectric
constant) but not close
enough for any chemical
bonding to take place, how
much energy is now required
to remove the electron from
the oxygen? One way to
calculate this is to move the
neutral atom to infinity, with
no work required, remove the




electron requiring £p, and
then return the oxygen ion to
its initial position; as it
returns it gains an energy
e2/4d from the image field,
where d is the final distance
from the surface. The
resultant correction of fip,
with d equal to 2 A, is 1.8 eV,
far from negligible. The
precise value is uncertain
because of the dielectric
approximation, the
uncertainty in the d used, and
other effects, but we may
expect  that  significant
corrections of the absolute
energies are needed relative
to the values in vacuum. The
reason that the values are
nevertheless useful as
parameters is that in solids
such corrections are similar
for all atoms involved and the
relative values are
meaningful.

How do the values obtained
from Tables 2-1 and 2-2
compare with the values
obtained directly by fitting
energy bands? This
comparison is made in Table
2-3 for the covalent systems
studied by Chadi and Cohen.
Agreement is semiquantita-
tive throughout and all trends
are reproduced except the
splitting of values for VsptT
in the compounds. The
discrepancies are comparable




to the differences between
different fits (the most recent
fits are used here), thus
justifying the use of the
simple forms in our studies.
Significantly different values
are obtained if one includes a
greater number of matrix
elements in the fit (Pandey,
1976) and  would  be
appropriate if we were to
include these matrix elements
in the calculation of
properties other than the
bands themselves.
Significantly different values
have also been given by
Levin (1974).

The coefficients from Table
2-1 and atomic term values
from Table 2-2 will suffice
for calculation of an
extraordinarily wide range of
properties of covalent and
ionic solids using only a
standard hand-held calculator.
This is impressive testimony
to the simplicity of the
electronic  structure  and
bonding in these systems.
Indeed the same parameters
gave a semiquantitative
prediction of the one-electron
energy levels of diatomic
molecules in Table 1-1.
However, that theory is
intrinsically approximate and
not always subject to
successive correc-

TABLE 2-3




Matrix elements from the
Solid State Table, compared
with values (in parentheses)
from fits to individual bands.
All values are in eV.
SOURCES of data in
parentheses: ¢ from Chadi
and Martin (1976); Si and Ge
from Chadi and Cohen
(1975); GaAs and ZnSe from
Chadi and Martin (1976).
NOTE: Where two values of
Vspr are given for
compounds, the first vaiue is
for an s state in the
nonmetallic atom and p state
in the metallic atom. States
are reversed for the second
value. Where two values of
(«¢p — cs)/4 are listed, the
first value is for the metallic
atom, the second for the
nonmetallic atom.

tions and improvements. In
most cases our predictions of
properties will be accurate on
a scale reflected in Table 2-3,
and though the introduction
of further parameters allows a
more accurate fit to the data,
it may be that improvements
at a more fundamental level
are required for a more
realistic treatment and that
these improvements cannot
be made without sacrificing
the conceptual and
computational simplicity of
the picture that will be
constructed in the course of




this book.

Before proceeding to
quantitative studies of the
covalent  solids it is
appropriate to comment on
the concept of
“electronegativity,”
introduced by Pauling to
denote the tendency of atoms
to attract electrons to
themselves (discussed
recently, for example, by
Phillips, 1973b, p. 32). It may
be an unfortunate term since
the positive terminal of a

battery has greater
electronegativity than the
negative terminal.

Furthermore, it was defined
to be dimensionless rather
than to have more natural
values in electron volts. It
would be tempting to take the
hybrid energy values of Table
2-2 as the definition of
electronegativity, but it will
be seen that in some
properties the energy Ep is a
more appropriate measure.
Therefore it will be a wiser
choice to use the term only
qualitatively.  Then  from
Table 2-2 (or from Fig. 1-8)
we see that the principal trend
IS an Increase in
electronegativity with
increasing atomic  number
proceeding horizontally from
one inert gas to the next (e.g.,
from neon, Na, Mg, Al, Si, p,




s, and Cl to argon). In
addition, the elements
between helium and neon
have greater electronegativity
than the heavier elements. It
iIs useful to retain
electronegativity ” to describe
these two qualitative trends.
2- E  Calculation  of
Spectra

We have seen that in solids,
bands of electron energies
exist rather than the discrete
levels of atoms or molecules.
Similarly there are bands of
vibration frequencies rather
than discrete modes. Thus, to
show electron eigenvalues, a
curve was given in Fig. 2-2
rather than a table of values.
However, a complete
specification of the energies
within the bands for a three-
dimensional solid requires a
three-dimensional plot and
that cannot be made; even in
two dimensions an attempt is
of limited use. Instead, a
convenient representation of
electronic structure can be
made by plotting the number
of states, per unit energy, as a
function of energy. This loses
the information about, for
example, electron velocity,
since that requires a
knowledge of energy as a
function of wave number.
However, it is all that is
needed to sum the energies of




the electrons for given atomic
arrangements.

Calculation of such a
spectrum might seem
straightforward, but if done
by sampling, it requires an
inordinate amount of
calculation. For example, to
produce a plot we might
divide the energy region of
interest into one thousand
intervals and then evaluate
the energies (as we did in
Section 2-A) over a closely
spaced grid in the Brillouin
Zone, keeping track of the
number  of  eigenvalues
obtained in each interval. A
great increase in efficiency
can be obtained by noting that
the energy bands have the full
symmetry of the Brillouin
Zone—in the case of CsCl, a
cube—so that the entire
Brillouin Zone need not be
sampled. One could sample
one half the zone and
multiply the results by two,
one eighth and multiply by
eight, or in fact, for a cube,
one forty-eighth  suffices.
However, even in a sample of
thousands of values, the
resulting histogram  shows
large statistical fluctuations.
Therefore an  alternative
approach is required.

The approach most
commonly used, and used
extensively in the curves in




this book, is the Gilat-
Raubenheimer scheme
(Raubenheimer and Gilat,
1966). In this scheme, the
idea is to replace the true
bands by approximate bands,
but then to calculate the
density of levels for that
spectrum accurately. This is
done by dividing up the
Brillouin Zone, or a forty-
eighth of the zone for cubic
symmetry, into cells; of the
order of fifty may be
appropriate;  Raubenheimer
and Gilat used cells in the
shape of cubes. They then fit
each band in each cell by a
linear expression, Ek = EO +
Al kx + A2ky + A3kz, with k
measured from the center of
the cell. Then the energy
region of interest for the
system is divided into some
1000 energy intervals and the
contribution to each of these
intervals is accurately and
analytically obtained from the
linear values of the bands in
each cell. This is illustrated
for one dimension in Fig. 2-9.
We see that the distribution of
the approximate bands is
obtained exactly. This turns
out to eliminate most of the
statistical error and to give
very good results.

In the Gilat-Raubenheimer
scheme it is inconvenient to
obtain the necessary values of




the gradient of the energy
with respect to wave number
in each cell, and the cubes do
not fit the Brillouin Zone
section exactly, so there are
problems in calculating the
energy at the surface of the
section. For this reason
Jepsen and Andersen (1971)
and later, independently,
Lehman and Taut (1972)
replaced

(¢)  Number of states
contributed in each interval
FIGURE 2-9

A schematic representation of
the Gilat-Raubenheimer
scheme  for  calculating
densities of states. The energy
bands (a) are replaced by
linear bands (b) in each cell.
The contribution by each cell
to each of a set of small
energy intervals (c) is then
obtained analytically.

cubes by tetrahedra and wrote
the distribution of energies in
terms of the values at the four
comers. A clear description of
this much simpler approach is
given by Rath and Freeman
(1975), who include the
necessary formulae. It is also
helpful to see one manner in
which the Brillouin Zone can
be divided into cells. This is
shown in Fig. 2-10, This
procedure has been discussed
also by Gilat and Bharatiya
(1975). Another scheme,




utilizing a more accurate
approximation to the bands,
has been considered recently
by Chen (1976).

In some sense this iIs a
computational detail, but the
resulting curves are SO
essential to solid state
properties that the detail is
important. Once a program
has been written for a given
Brillouin Zone, any of the
spectra for the corresponding
structure can be efficiently
and accurately obtained from
the bands themselves.
PROBLEM 2-1 Calculating
one-dimensional energy
bands

Let us make an elementary
calculation of energy bands,
using the notation of LCAO
theory. For many readers the
procedure will be familiar.
Consider a ring of N atoms,
each with an s orbital. We
seek an electronic state in the
form of an LCAO,

where the integers a number
the atoms. We can evaluate
the expectation value of the
energy, considering all atoms
to be identical, so (a | HI a) =
R is the same for all a. We
can also neglect all matrix
elements (a\H\p'), except if a
and /? differ by one; we write
that

FIGURE 2-10

(@ The body-centered-




cubic  Brillouin  Zone s
divided into 48 equivalent
pyramidal segments. (Two
such pyramids are required
for  face-centered  cubic
zones.) (b) The pyramid is cut
by equally spaced planes
parallel to the base, (c) Most
of the slab may be subdivided
Into triangular prisms. An
edge is left over on the right
which can be divided into
triangular prisms with one
tetrahedron left over. Each
triangular prism

(d) may finally be divided
into three tetrahedra, (e). This
divides the Brillouin Zone
entirely into tetrahedra of
equal volume. The bands are
taken to be linear in wave
number within each
tetrahedron.

We shall treat the uj as
independent of ua and
minimize the expression with
respect to UI, giving a linear
algebraic equation for each a.
(@ Show that for any
integer it there is a solution
for all of these equations of
the form

(b) Give the energy as a
function of n, and sketch it as
a function of n/N for large N.
Include positive and negative

n.
(c) Obtain the value of A
that normalizes the electron
state.




(d Show that for an n
outside the range — N/2 <n<
N/2, the electron state
obtained is identical to that
for some n within this range
(within the Brillouin Zone). It
suffices to prove that for
given n the ua are unchanged
by the addition of N to n.
PROBLEM 2-2 Electron
dynamics

Consider an electron in a one-
dimensional energy band
given by E(k) = — y2 COS
ka in a Brillouin Zone, —n/a
< k < n/a. At time t = 0, with
the electron having wave
number k = 0, apply an
electric field é.

Obtain the energy, the speed,
and the position of the
electron as a function of time.
The  behavior will be
oscillatory. It can be thought
of as acceleration of the
electron followed by gradual
diffraction caused by the
lattice.

How many lattice distances
(each distance a = 2 A) does
the electron go if v2 =2 eV
and the field is 100 volts per
centimeter?




FIGURE 1-4

Three p orbitals, each
directed along a different
Cartesian axis.

(a) Fishnet plot
(b) Contour plot
(c) Schematic representation

FIGURE 1-5

Three ways of representing
atomic p orbitals.

represented in terms of
Cartesian coordinates in the
form

Fig. 1.6 corresponds to the
third angular form listed in
Eg. (1-21).

A very important feature of d
orbitals is that they are
concentrated much  more
closely at the nucleus than are
s and p orbitals. The physical
origin of this can be

FIGURE 1-6

The d orbiiai corresponding
to the xy/r2 form in Eq. (1-
21).

understood in terms of the n
— 3 state of hydrogen. The
3s, 3p, and 3d states all have
the same energy, but of these




three, the d state corresponds
classically to an orbit that is
circular. At lesser angular
momentum, a classical orbit
of the same energy reaches
further into space; this
corresponds to the great
spatial extent of the p orbital.

The S state, which
Corresponds classically to an
electron vibrating radially

through the nucleus, stretches
even further from the nucleus.
Therefore, d states tend to be
influenced much less by
neighboring atoms than are s
and p states of similar energy.
We shall have little occasion
to discuss /'orbitals, though
they are important in studying
properties of the rare-earth
metals. The f orbitals are
even more strongly
concentrated near the nucleus
and isolated from neighboring
atoms than are d orbitals.

Let us now discuss the
electronic states in the
hydrogen atom. As indicated,
the energy of an electronic
state for hydrogen depends
only upon the principal
guantum number n. In this
book, atomic energy




eigenvalues, or other
eigenvalues measured from
the same zero of energy, will
be designated by F. rather
than E. For hydrogen,

(122)

where a0 is the Bohr radius,
0.529 A, e is the magnitude
of the electron charge, m is
the electron mass, n is the
principal quantum number,
and the unit of energy is the
electron volt (eV).

A sketch of the energies of
the states of hydrogen, the
energy levels, is given in Fig.
1-7. In the ground state of the
hydrogen atom, a single
electron occupies the Is
orbital. All of the other states,
having  higher  energies,
represent excited states of the
system. The electron can be
transferred from the ground
state to an excited state by
exposing it to light of angular
frequency CO = AE/h, where
AE is the energy difference
between the two levels.
Indeed, the most direct
experimental study of energy
levels of atoms (also called
term values) in excited states
IS based upon spectroscopic
analysis of the corresponding
light absorption and emission
lines.




To understand the electron
states  systematically in
elements other than
hydrogen, imagine that the
charge of the hydrogen
nucleus is increased element
by element and, thereby, the
atomic number, z, is steadily
increased. At the same time,
Imagine that an electron is
added each time the nuclear
charge is increased by one
unit e. As the nuclear charge
increases, the entire set of
states drops in energy,
relative to hydrogen. In all
atoms but hydrogen, 5-state
energies are lower than p-
state energies of the same
principal quantum number. In
Fig. 1-8 is shown the relative
variation in  energy of
occupied Is, 2s, 2p, 3s, 3p,
3d, 45, and 4p orbitals as the
atomic number (equal to the
number of protons in the
nucleus) increases.

In Litium, atomic number 3,
the Is level has dropped to a
very low energy and is
occupied by two electrons.
The Is orbital is considered
part of the atomic core of
Litium; a single electron
occupies a 2s orbital. In the
Litium row, all elements, to




neon, z= 10, have a “Litium
core”; the energy levels in
successive atoms

FIGURE 1-7

Energy-level diagram for
atomic hydrogen. The lines
are branched at the right to
show how many orbitals each
line represents.

continue to drop in energy
and sp  splitting  (the
difference in energy between
levels, or Elp £25s)
increases. At neon, both 2s
and 2p orbitals have become
filled; starting with the next
element, sodium, they
become part of the atomic
core, since, at sodium, filling
of the 3s orbital begins, to be
followed by filling of the 3p
orbitals. The filling of
successive levels is the
essence of periodic variation
in the properties of elements
as the atomic number
increases. The levels are
filled in each subsequent row
of the periodic table the same
way they, are filled in the
Litium row, but the number
of states in the atomic core is
larger in lower rows of the
table.




In the potassium row, the
unoccupied 3d level begins to
be filled; its energy has
dropped more slowly than
that of the 3s and 3p levels,
but it becomes filled before
the 4p level begins to fill;
then in the ground state of
scandium the 3d level
becomes occupied with one
electron. Elements in which
some d states are occupied
are called transition metals.
The 3d states have become
completely  filled  when
copper, atomic number 29, is
reached. The 3d states
become part of the atomic
core as z increases further,
and the series Cu, Zn, Ga,...,
gains electrons in an order
similar to that of the series
Na, Mg, Al, —

Almost all of the properties of
elements are determined by
the occupied levels of highest
energy; the electrons filling
the 5 and p levels in each row
(and sometimes those filling
d levels) are traditionally
called valence electrons and
determine

FIGURE 1-9

Periodic chart of the
elements.

chemical properties. They
also have excited states

available to them within a




few electron volts. Since
these energy differences
correspond to

electromagnetic  frequencies
in the optical range, the
valence electrons determine
the optical properties of the
elements. The periodic table
(Fig. 1-9) summarizes the
successive filling of
electronic levels as the atomic
number increases.

1- C Electronic Structure
of Small Molecules

We have seen how to
enumerate the electron states
of single atoms. If we
consider several isolated
atoms as a system, the
composite list of electron

states for the system would
simply be the collection of all
states from all atoms. If the
atoms are brought together
closely enough that the wave
functions of one atom overlap
the wave functions of
another, the energies of the
states will change, but in all
cases the number of states
will be conserved. No states
disappear or are created. If
the sum of the energies of the
occupied states decreases as
the atoms are brought
together, a molecule is said to
be bound.




An additional energy must be
supplied to separate the
atoms. (It should be noted
that other terms influence the
total energy of a system, and
all influences must be
considered in  evaluating
bonding energy. We shall
return to this later.)

It turns out that the energy of
occupied electronic states in
small molecules, and indeed
in solids, which have large
numbers of atoms, can be
rather well approximated with
linear combinations of atomic
orbitals (or LCAQO’s). Making
such an  approximation
constitutes a very great
simplification in the problem

of determining molecular
energies since, instead of
unknown functions, only

unknown coefficients appear
in the linear combination. The
LCAO description of the
occupied molecular orbitals is
much more accurate if the
atomic orbitals upon which
the approximation is based
differ somewhat from those
of the isolated constituent
atoms; this complication will
not arise in this book since
ultimately our calculations
will be in terms of matrix




elements, not in terms of the
orbitals  themselves. The
smaller the number of atomic
orbitals used, the greater will
be the simplification, but the
poorer will be the accuracy.
For our discussion of solids, a
set of orbitals will be chosen
that is small enough to enable
calculation of a wide range of

properties simply. For
calculations of properties
depending only upon

occupied states, the accuracy
will be quite good, but for
excited states—those electron
states which are unoccupied
in the ground state of the
system—the properties are
not accurately calculated. We
can make the same choice of
orbitals in diatomic molecules
that will turn out to be
appropriate for solids.

In describing states of the
small molecule (as well as the
solid) the first step is to
enumerate each of the
electronic states in the atom

that will be used in the
mathematical expansion of
the electron states in the

molecule. These become our
basis states.




We let the index a = 1, 2,
3run from one up to the
number of states that are
used. Then the molecular
state may be written (with the
notation discussed in Section
1-A) as

where the ua are the
coefficients that must be
determined. The orbitals | a)
representing the basis states
are selected to be normalized,
(ala) =1. We also take them
(as in Section 1-A) to be
orthogonal to each other;
<[?fa>=0ifp =£ a.

Next, we must find the
coefficients ua of Eq. (1-23)
for the electron state of
lowest energy, by doing a
variational  calculation as
indicated in Section 1-A. That
i, we evaluate the variation

the expectation value of the
Hamiltonian. In particular, if

we require that variations




with respect to a particular uf
be zero (as in Eg. 1-10), we
obtain

or more simply,

with E — (v IHI &)/ 1 ¢é).
(Later, specific eigenvalues
will be written as e’s with
appropriate subscripts.) There
IS one such equation for each
p corresponding to a basis
state.

We have obtained a set of
simultaneous linear algebraic

equations  with  unknown
coefficients Ma. Their
solution gives as many
eigenvalues E as there are
equations. The lowest E
corresponds to the lowest
electron state; the next

lowest, to the lowest electron
state having a wave function
orthogonal to that of the first,
and so on. The solution of
these equations gives the ua
which, with Eq. (1-23), give
wave functions for the one-
electron energy eigenstates
directly. The eigenvalues
themselves can also be
obtained directly from the
secular equation, familiar
from ordinary algebra. The
secular determinant vanishes,




det(tf" - Eop«) =0, (1-
27)
where “det ” means

“determinant of” and Opa Is
the unit matrix. We have
made one further
simplification of the notation
in writing Hila = (p\H\oc).
We shall see in Section 2-D
how simple estimates of these
matrix elements can be made.
Then, from Egs. (1-26) and
(1-27), we can obtain the
energies and the states
themselves.

Let us use the foregoing
method to describe the states
in a small molecule. The
hydrogen molecule, with two
electrons, is a simple case and
iIs more closely related to the
systems we shall be
considering than the simpler
hydrogen molecular ion, H2 *
For the hydrogen molecule,
we use two orbitals, 11) and
12), which represent Is states
on atoms 1 and 2
respectively. Eq. (1-26) then
becomes

where we have made the
natural definition of the Is




energy £s = (l|H|l) = (21H12).
The energy Es is slightly
different from what it would
be in a free atom, first,
because an electron
associated with atom 1 has a
potential energy lowered by
the presence of the second
atom, and second, because
the energy may be lowered as
a result of the choice of a Is
function slightly different
from that of the free atom.
We have defined a matrix
element v2 = — #12 = —H21
to correspond to the notation
we shall use later. The matrix
element v2 is called a
covalent energy, and is
defined to be greater than
zero; v2 will generally be
used for interatomic matrix
elements, in this case between
s orbitals. All the wave
function  coefficients are
taken to be real in this case;
we may always choose real
coefficients but in solids will
find it convenient to use
complex coefficients.

Eqg. (1-28) is easily solved to
obtain a low-energy solution,
the bonding state, with energy

as well as a high-energy
solution, the antibonding
state, with




Substituting the eigenvalues
given in Egs. (1-29) and (1-
30) back into Eq. (1-28) gives
coefficients Ul and u2 . For
the bonding state, Ui = u2 =
2~112, and for  the
antibonding state, Mj = —u2
= 2”1/2. The conventional
depiction of these bond
orbitals and antibond orbitals
is illustrated in Fig. 1-10,a.

Notice that the wuse of
orthogonal eigenfunctions for
the two atomic states (taking
the overlap (112) = 0) is not
consistent with Fig. 1-10,b, in
which a clear nonzero overlap
is shown. The derivation
made in Appendix B allows
for a nonzero overlap and
shows that part of its effect
can be absorbed by a
modification of the value of
v2 and the other part can be
absorbed in a central- force
overlap interaction between
the atoms, which is discussed
in Chapter 7.

Here, for the hydrogen




molecule, the lowering of the
energy of the molecule, in
comparison to  separated
atoms, is only approximately
accounted for by Eq. (1-29).
If one wishes to describe the
total energy as a function of
the separation between atoms,
one cannot simply add the
energy of the two electrons in
the bonding state. The
central-force corrections
required by this overlap, as
well as other terms, must all
be included.

Bonding orbital ca

Antibonding energy level
Kh Bonding energy level

(@ Homopolar
molecule

diatomic

Antibonding orbital
Bonding orbital

(b) Heteropolar
molecule

diatomic

FIGURE 1-10

The formation of bonding and
antibonding combinations of
atomic orbitals in diatomic
molecules, and the
corresponding  energy-level




diagrams.

Although it is possible to
understand the hydrogen
molecule in terms of the ideas
we have discussed, hydrogen
has only limited relevance to
the problems we will be
considering. In fact, it is not
the most satisfactory way to
describe the hydrogen
molecule itself. In the
equilibrium configuration for
hydrogen, the two protons are
so close together that a much
better model is one in which
the two protons are thought of
as being superimposed; that
Is, we consider the nucleus to
be that of the helium atom.
Once this is understood, one
can make corrections for the
fact that in hydrogen the two
protons are actually
separated. Such an approach
IS more in tune with the spirit
of this text: we will always
seek the simplest description
appropriate to the system we
are interested in, and make
corrections afterward.

It has been argued that this
united atom approach,
treating H2 as a correction
applied to He, IS
inappropriate when  the
protons are far apart.




That is indeed true, but we
are ultimately interested in
H2 at equilibrium spacing.
We will therefore simply
restate our results for H2 in
the terminology to be used
later and move on.

The separation of

those two levels is 2V2,
where v2 is the covalent
energy. To find the total
energy of this system it is
necessary to add a number of
corrections to the simple sum
of energies of the electrons. It

will be convenient to
postpone consideration of
such corrections until
systematic ~ treatment in
Chapter 7.

Hydrogen is a very special
case also when it is a part of
other molecules. We saw that
in the Litium row and in the
sodium row of the periodic
table both a valence s state
and a valence p state are
present. We will see that
when these atoms form




molecules, the bond orbitals
are mixtures of both s and p
orbitals.

There is no valence p state in
hydrogen, and its behavior is
quite different. In many ways
the hydrogen proton may be
regarded as a loose positive
charge that keeps a molecule
neutral rather than as an atom
that forms a bond in the same
sense that heavier atoms do.

of

29

Thus we can think
methane, CH4, as “ neon
with four protons split off
from the nucleus, just as we
can think of H2 as “helium”
with a split nucleus.

1- D The Simple Polar
Bond

In the H2 molecule just
discussed, the two hydrogen
atoms brought together were
identical, and their two
energies Ss were the same.
We shall often be interested
In systems in which the
diagonal energies ifn and H22
(that is, diagonal elements of
the Hamiltonian matrix) are
different; such molecules are
said to have a hetero- polar or
simply polar bond. Let us use,
as an example, the molecule




LiH. We expect the linear
combinations to be those of
the hydrogen Is orbitals and
Litium 2s orbitals,

though as we indicated at the
end of the preceding section,
special con-siderations
govern molecules involving
hydrogen.

In calculating the energy of
heteropolar bonds, Egs. (1-
28) must be modified so that
£s is replaced by two
different energies, £* for the
low-energy state (for the
energy of the anion) and fij
for the high-energy state (for
the energy of the cation).

The value of one half of the
anion cation energy-
difference is the polar energy:

It is convenient to define the
average of the cation and
anion energy, written as

Then Egs. (1-31) become
The solution of Egs. (3-34) is
trivial:




£b and £a are bonding and
antibonding energies,
respectively. The splitting of
these levels is shown in Fig.
1-10,b. In looking at the
energy-level diagram of that
figure, imagine that the
Interaction between the two
atomic levels, represented by
v2, pushes the levels apart.
This is the qualitative result
that follows also from the
perturbation-theoretic

expression, Eq. (1-14).

It is also shown in the figure
that the charge density
associated with the bonding
state shifts to the low-energy
side of the molecule (the
direction of the anion). This
means that the molecule has
an electric dipole; the
molecule is said to have a
polar bond. Polarity of
bonding is an important
concept in solids and it is
desirable to introduce the
notion here briefly; it will be
examined later, more fully, in
discussion of solids.

To describe polarity
mathematically,  first we
obtain and u2 values for the
bonding state by substituting
£b for the energy E in Egs.
(1-34), the first equation of
which can then be rewritten
as




(1-36)

Second, if the individual
atomic wave functions do not
overlap, the probability of
finding the electron on atom 1
will be ui /(ul + ui) and the
probability of finding it on
atom 2 will be ui/iui + ui).
This  follows from the
average-value theorem, Eq.
(1-3). Manipulation of Eq. (1-
36) leads to the result that the
probability of the electron
appearing on atom 1 is (1 +
0Cp)/2 and the probability of
finding it on atom 2 is (1 —
ap)/2, where ap is the polarity
defined by

We can expect the dipole of
the bond to be proportional to
u\ — u\ = bcp. The polarity of
the bond and the resulting
dipole are central to an
understanding of partially
covalent solids.

Another useful concept is the
complementary quantity,
covalency, defined by

1- E Diatomic Molecules




In Section 1-C we noted that
molecular hydrogen is unique
in that a single atomic state,
the Is state, dominates its
bonding properties.

In the bonding of other
diatomic molecules, valence s
states and p states are
important, and this will be
true also in solids. Only
aspects of diatomic molecules
that have direct relevance to
solids will be taken up here.
A more complete discussion
can be found in Slater (1968)
or Coulson (1970).

Homopolar Bonds

Specific examples of
homopolar diatomic
molecules are Li 2, Be2, B2,
c2, N2, 02, and F2, though, as
seen in Fig. 1-8, variation in
energy of the s and p electron
states is very much the same
in other series of the periodic
table as it is for these
elements. Four valence states
for each atom must be
considered—a single s state
and three p states. It might
seem at first that the
mathematical expansion of
each molecular electronic




state would require a linear
combination of all of these
valence states; however, the
matrix elements between
some sets of orbitals can be
seen by symmetry to vanish,
and the problem  of
determining the states
separates into two simpler
problems. Fig. 1-11 indicates
schematically which orbitals
are coupled. The matrix
elements  between  other
orbitals than those indicated
by a connecting line are zero.

The Py orbitals of atoms 1
and 2 are coupled only to
each other. They form simple
bonding and antibonding
combinations just as in the
hydrogen molecule. In a
similar way, the Pz orbitals
form bonding and
antibonding  combinations.
The four resulting p-orbital
combinations are called n
states, by analogy with p
states, because each has one
unit of angular momentum
around the molecular axis.
The Tt states are also
frequently distinguished by a
g, for gemde (German for *
even”), or




The coupling of atomic
orbitals in Litium-row
diatomic molecules, and the
resultant bond designations
(at right).

u, for ungerade (“ odd ”),
depending on whether the
wave function of the orbital is
even or odd when inverted
through a point midway
between the atoms. For %
orbitals, the bonding
combination is ungerade a n
orbital that is gerade (ng) is
zero on the plane bisecting
the bond.

A feature of homopolar
diatomic molecules is that s
states and px states are also
coupled, and all four states
are required in the expansion
of the corresponding
molecular orbitals, called O
states. The bonding
combination for a orbitals is
gerade (Gg). The s and p
states are hybridized in the
molecule.

(The o-orbital combinations
have no angular momentum
around the molecular axis.)
However, it is not necessary
to solve four simultaneous
equations; instead, construct
gerade and ungerade
combinations of s states and
of p states. There are no
matrix elements of the




Hamiltonian  between the
gerade and ungerade
combinations, SO the

calculation of states again
reduces to the solution of
quadratic equations, as in the
case of the hydrogen
molecule. Notice that the two
pairs of coupled s and p states
have matrix elements of
opposite sign (Vspa, - Vspa)
because of the difference in
the sign of the p lobe in the
two cases. The general
convention for signs will be
specified in Section 2-D.

FIGURE 1-12

The development of
molecular energy levels as a
pair of Litium-row atoms is
brought together (that is,
internuclear  distance  d
decreases from left to right).

Let us trace the changes in
energy that occur as a pair of
identical atoms from the
Litium row come together.
Qualitatively these changes
are the same for any of the
elements and they are
illustrated schematically in
Fig. 1-12. On the left,
corresponding to large
separations of the atoms, the
energy levels have simply the
atomic energies £s (one s
orbital for each atom) and fip




(three p orbitals for each
atom, px, Py, and pz). As the
atoms are brought together,
the electron levels split (one
energy going down and the
other, up) and bonding and
antibonding pairs are formed.

The n orbitals oriented along
the y-axis have the same
energies as those oriented
along the z-axis. The bonding
and antibonding
combinations for these are
indicated by 1 nl§ and Ing,
respectively. The number one
indicates the first
combination of that symmetry
in order of increasing energy.
Each corresponds to two
orbitals and is drawn with
double lines. At large
separation the O orbitals are,
to a good approximation, a
bonding combination of s
states and an antibonding
combination of s states, and a
bonding combination of px
states and an antibonding
combination of px states, in
order of increasing energy.
The  energies of  the
intermediate levels, indicated
by 20,, and 3 og in the figure,
become comparable and
should be thought of as




bonding and antibonding
combinations of sp-hybrids,
mixtures of s states and p
states. Their ordering is as
shown, and is the same for all
the diatomic molecules of the
Litium row (Slater, 1968, pp.
451 and 452).

A particularly significant
aspect of the energy levels
seems to apply to all of these
simple diatomic molecules:
the energy of the low-lying
antibonding state 2<7,, 1is
never greater than that of
either of the two high-energy
bonding states 30g and \nu.

(The latter two can occur in
either order, as suggested in
the figure.) Such crossings of
bonding and antibonding
levels do occur in solids and
are an essential feature of the
electronic structure of what
are called covalent solids.

The Occupation of Levels

As indicated in Section 1-A,
the energy of electron states
and their occupation by
electrons are quite separate
topics. For example, it is




possible to specify the energy
values at an observed
spacing, as in Fig. 1-12, and
then to assign to them, in
order of increasing energy,
whatever  electrons  are
available, ignoring any effect
that an electron in one level
may have on an electron in
another level. More precisely,
the energy of a state in any
system is defined to be the
negative of the energy
required to move a single
electron from the designated
state to an infinitely distant
loca-tion, without changing
the number of electrons in the
other states. Most theoretical
calculations of energy levels
determine what that energy is
for each state, since this
information is closely related
to a wide \variety of
properties.

When we calculate the total
energy of solids, we will
consider corrections to the
sum of these energies; for the
present, it is satisfactory to
think of these energy levels as
remaining fixed in energy as
electrons are added to them.

If two atoms forming a




diatomic molecule are both
Litium, there are only two
valence electrons, which
would be put in the 2o0g
bonding state; the qualitative
picture of electronic structure
and binding of Li 2 is exactly
the same for H2; the levels
deriving from the valence p
state of Litium may be
disregarded. If the molecule
were Be2, there would be
four  electrons in  the
molecule; two would occupy
the 20g bonding state, and the
other two would occupy the
2<r,, antibonding state. The
greater energy of the
antibonding  electrons  (in
comparison to the atomic
levels) would tend to cancel
the energy of the bonding
electrons, and hence, bonding
would be expected to be
weak, though Be2 is found in
nature. As the atomic number
of the constituents increases,
bonding and antibonding
states are filled in succession.
F2 would have enough
electrons to fill all but the
highest antibonding state,
3ou. A pair of neon atoms
would have enough electrons
to fill all bonding and
antibonding states and, like
Be2, would not be bound at
all.




In 02, when the last levels to
be filled are degenerate, a
special situation occurs. Only
two electrons occupy the Ing
state though there are states to
accommodate four. There are
different ways the state could
be filled, and Hund’s rule
tells us which arrangement
will have lowest energy. It
states that when there is
orbital  degeneracy, the
electrons will be arranged to
maximize the total spin.

This means that each electron
added to a set of degenerate
levels will have the same
(parallel) spin, if possible, as
the electron which preceded
it. The physical origin of this
rule is the fact that two
electrons of the same spin can
never be found at precisely
the same place, for basically
the same reason that leads to
the Pauli principle. Thus
electrons of the same spin
avoid each other, and the
repulsive Coulomb




interaction energy between
them is smaller than for
electrons of opposite spin.
The corresponding lowering
in energy per electron for
parallel-spin electrons,
compared to antiparallel-spin
electrons, is called exchange
energy. It tends to be small
enough that it is dominant
only when there is orbital
degeneracy, as in the case of
02, or very near orbital-
degeneracy.

The dominance of exchange
energy is the origin of the
spin alignment in
ferromagnetic  metals. (A
more complete discussion of
exchange energy appears in
Appendixes A and c.)

In 02, the two degenerate Ing
states take one electron in a
py state and one in a pz state.
As a result, the charge density
around the 02 molecule has
cylindrical symmetry, though
there is a net spin from the
two electrons. In contrast, if
both electrons were in py
states, they would necessarily
also have opposite spin. This
would lead to a flattened
charge distribution around the
molecule. Hund’s rule tells us
that the former arrangement
has lower energy because of
the exchange energy.




In the same sense that H2 is
like He (as mentioned at the
end of Section 1-C), the
molecule C2H4 is like 02,
except that the two hydrogen
protons are outside the carbon
nucleus rather than inside.
The number of electrons is
the same in both C2H4 and
02 and essentially the same
classification of electron
levels can be made. However,
if the protons in C2H4 are all
placed in the same plane, the
Inu state oriented in that plane
will have lower energy than
that oriented perpendicular to
the plane.

The orbital energy will then
be lowered if the first orbital
Is occupied with electrons
with both spins. This planar
form in fact gives the stable
ground-state arrangement of
nuclei and electrons in
ethylene.

If it were possible to increase
the exchange energy it would
eventually become
energetically favorable to
occupy one Py state and one
pz state of parallel spin. Then
the electron density would be




cylindrically symmetric as in
oxygen, and the protons
would rotate into
perpendicular planes in order
to attain lower Coulomb
interaction energy. C2H4
illustrates several points of
interest. First, any elimination
of orbital degeneracy will
tend to override the influence
of exchange energy. Second,
atoms (in this case, protons)
can arrange themselves in
such a way as to eliminate
degeneracy; this creates an
asymmetric electron density
that stabilizes the new
arrangement. Through this
self-consistent,  cooperative
arrangement, electrons and
atoms minimize their mutual
energy.

This same cooperative action
is often responsible for the
spatial arrangement of atoms
in  solids. Once that
arrangement is specified in
solids, a particular conception
of the electronic structure
becomes appropriate, just as
in the case of C2H4.
Furthermore, that conception
can be quite different from
solid to solid, depending on
which stable configuration of
atoms is present.




To make the discussion of the
electronic structure of
diatomic molecules
quantitative, it is necessary to
have values for the various

matrix elements. It will be
found that for solids, a
reasonably good
approximation of the

interatomic matrix elements
can be obtained from the
formula vih = flip h2/(md2),
where d is the internuclear
distance and values for t]ijx
are four universal constants
for SSO, spa, ppo, and ppn
matrix elements, as given in
the next chapter (Table 2-1).
Furthermore, atomic term
values (given in Table 2-2)
can be used for Ep and fis.

Applying such an
approximation to the well-

understood diatomic
molecules will not reveal
anything about those
molecules, but can tell
something about the
reliability of the

approximations that will be
used in the study of solids.
The necessary  quadratic
equations can be solved to
obtain the molecular orbital




energies in terms of the
matrix elements and values
for all matrix elements can be
obtained from Tables 2-1 and
2-2. This gives the one-
electron energies listed in
Table 1-1, where the bond
lengths (distance between the
two nuclei) are also listed.
For comparison with these
values, results of full-scale
self-consistent molecular
orbital calculations are listed
in parentheses. The solid state
matrix elements give a very
good semi-  quantitative
account of the occupied states
(which lie below the shaded
area) for the entire range of
homopolar molecules; there
are major errors only for the
iog levels in 02 and F2. The
empty levels above (shaded)
are not well given. Neither
will the empty levels be as
well given as the occupied
ones in the description of
solids in terms of simple
LCAO theory.

This degree of success in
applying solid state matrix
elements outside the realm of
solids, to diatomic molecules,
gives confidence in their
application in a wide range of
solid state problems.




Heteropolar Bonds

Bonding of diatomic
molecules in  which the
constituent atoms are

different can be analyzed
very directly, and only one or
two points need be made. The
n states in heteropolar
diatomic bonding are
calculated just as the simple
polar bond was. In each case
only one orbital on each atom
Is involved. A polarity can be
assigned to these bonds, just
as it was in Section I'D.

TABLE 1-1

One-electron  energies in
homopolar diatomic
molecules, as obtained by
using solid state matrix
elements. Values in

parentheses are from accurate
molecular orbital
calculations. Shading denotes
empty orbitals. Energies are
inevV.

SOURCES of data in
parentheses: Li2, Be2, c2, Nj,




and F2 from Ransil (1960);
B2 from Padgett and Griffing
(1959); 02 from Kotani,
Mizuno, Kayama, and
Ishiguro (1957); all reported
in Slater (1968).

There is, however, a
complication in the treatment
of the O bonds. Because the
states are no longer purely
gerade and ungerade, the four
simultaneous equations
cannot be reduced to two sets
of two. In a diatomic
molecule this would not be
much of a complication, but it
IS very serious in solids.
Fortunately, for many solids
containing a bonds, hybrid
basis states can be made from
s and p states, and these can
be treated approximately as
independent  pairs, which
reduces the prob-lem to that
of finding two unknowns for
each bond.

In other cases, solutions can
be approximated by use of

perturbation  theory. The
approximations  that are
appropriate in solids will

often be very different from
those appropriate for diatomic
molecules.




Therefore, we will not discuss
the special case of o-bonded
hetero- polar molecule.

Obtain A such that the

(@)
wave function is normalized,
(eley=1.

(b) Obtain the expectation
value of the potential energy,
(é\ Vill/).

(c) Calculation
expectation value
Kinetic energy,
K.EEANVIMNX

Is trickier because of the
infinite curvature at /» = 0. By
partial integration in Eqg. (1-
3), an equivalent form is
obtained:

Evaluate this expression to
obtain K.E.

(d Verify that the
expectation value of the total
energy, <|//| viiil} + K.E. is a

the
the

of
of




minimum with respect to
variation of 00. Thus a
variational solution of the
form e~',r would have given
the correct wave function.

(e)  Verify that this i//(r) is
a solution of Eq. (1-5).
PROBLEM 1-2  Atomic
orbitals

The hydrogen 2s and 2p
orbitals can be written

and

(see Schiff, 1968, p. 94), and
p orbitals can also be written
with X replaced by V and by
z. All four hydrogen orbitals
have the same energy, —
e2/(8flc).

Approximate the Litium 2,5
and 2p orbitals by the same
functions and approximate
the Litium potential by —
e2/r + ucore(r), where
Calculate the expectation
value of the energy of the 2s
and 2p orbitals. The easiest
way may be to calculate
corrections to the — e2/(8a0)
value.

This gives the correct
qualitative picture of the
Litium valence states but is
guantitatively Inaccurate.
Good quantitative results can
be obtained by using forms
such as are shown above and
varying the parameters in the
exponents. Such variational
forms are called “ Slater
orbitals.”




PROBLEM 1-3 Diatomic
molecules

For c2, obtain the O states for
the  homopolar  diatomic
molecule (see Fig. 1-11), by
using the matrix elements
from the Solid State Table, at
the back of the book, or from
Tables 2-1 and 2-2, in
Chapter 2. Writing

the equations analogous to
Eq. (2-2) become

Solutions will be even or odd,
by symmetry, so there can be
solutions with u2 = Ui and
w4 = —u3, and the above
reduce to two equations in
two unknowns. Solve them
for E. Then, solve again with
If2=— 1T and «4 = u3.
Confirm the values of these
energies as given in Table 1-1
for c2.

The lowest state contains
comparable contributions
from the s and p orbitals.
What is the fraction of s
character, that is, (ui + uiyiui
+ui+ui+ul)l

CHAPTER 2

Electronic Structure of Solids
SUMMARY

In solids, atomic valence
levels broaden into bands
comprising as many states as
there are atoms in the solid.
Electrons in these band states
are  mobile, each electron
state being characterized by a
momentum p or wave number




k = p/tt that is restricted to a
Brillouin Zone. If each atom
in the solid has only four
neighboring  atoms,  the
atomic valence orbitals can
be combined to form bond
orbitals between each set of
neighbors, and two electrons
per bond can stabilize such an
arrangement of atoms. In
such  covalent structures,
bands of states based upon
the bond orbitals will be fully
occupied by electrons but
other bands will be empty.
The bonds may be symmetric
or polar. The covalent
structure will not be stable if
there are not two electrons
per bond, if the bond energy
is too small, or if the bond is
too polar. Under these
circumstances the lattice will
tend to collapse to a denser
structure. It may be an ionic
crystal, which is a particularly
stable arrangement, if by
redistributing the electrons it
can leave every atomic shell
full or empty. Otherwise it
will be metallic, having bands
of states that are only
partially occupied.

If the electron states are
represented by linear
combinations of  atomic
orbitals, the electron energy
bands are found to depend on
a set of orbital energies and
interatomic matrix elements.




Fitting these to accurate
bands suggests that atomic
term values suffice for the
orbital energies and that
nearest-neighbor interatomic
matrix elements scale with
bond- length d from system to
system as d~2. This form, and
approximate coefficients, all
follow from the observation
that the bands are also
approximately given by a
free-electron approximation.
Atomic term values and
coefficients determining
interatomic matrix elements
are listed in the Solid State
Table and will be used in the
study of covalent and ionic
solids.

In this chapter we give a very
brief description of solids,
which is the principal subject
of the book. The main goal is
to fit solids into the context of
atoms and molecules. In
addition, we shall carefully
formulate the energy band in
the simplest possible case and
study the behavior of
electrons in energy bands.

2- A Energy Bands
When many atoms are
brought together to form a
solid, the number of electron
states is conserved, just as in
the formation of diatomic
molecules. Likewise, as in
diatomic molecules, the one-
electron states for the solid




can, to a reasonable
approximation, be written as
LCAOQO’s. However, in solids,
the number of basis states is
great. A solid cube one
centimeter on an edge may
contain 1023 atoms, and for
each, there is an atomic s
orbital and three p orbitals. At
first glance it might seem that
such a problem, involving
some 4 X 1023 equations,
could not be attacked.
However, the simplicity of
the crystalline solid system
allows us to proceed
effectively and accurately. As
the atoms are brought
together, the atomic energy
levels split into bands, which
are analogous to the states
illustrated  for  diatomic
molecules in Fig. 1-12. The
difference is that rather than
splitting into a single bonding
and a single antibonding
state, the atomic levels split
into an entire band of states
distributed between extreme
bonding and antibonding
limits.

To see how this occurs, let us
consider the simplest
Interesting case, that of
cesium chloride. The
structure of CsCl is shown in
Fig. 2-1,a. The chlorine
atoms, represented by open
circles, appear on the comers
of a cube, and this cubic array




Is repeated throughout the
entire crystal. At the center of
each cube is a cesium atom
(at the body-center position
il the cube). Cesium chloride
IS very polar, so the occupied
orbitals lie almost entirely
upon the chlorine atoms. As a
first approximation we can
say that the cesium atom has
given up a valence electron to
(a) Crystal structure (b)
Brillouin Zone

FIGURE 2-1

(@) A unit cube of the cesium
chloride crystal structure, and
(b) the corresponding
Brillouin Zone in wave
number space.

fill the shell of the chlorine
atom, which becomes a
charged atom, called an ion.
Thus we take chlorine 3s
orbitals and 3p orbitals as the
basis states for describing the
occupied states. Furthermore,
the chlorine ions are spaced
far enough apart that the s
and p states can be considered
separately, as was true at
large inter- nuclear distance d
in Fig. 1-12. Let us consider
first the electron states in the
crystal that are based upon
the chlorine atomic 3s
orbitals.

We define an index i that
numbers all of the chlorine
jons in the crystal. The
chlorine atomic s state for




each ion is written | Si). We
can approximate a crystalline
state by

The variational calculation
then leads immediately to a
set of equations, in analogy to
Eg. (1-26):

It is convenient at this stage
to avoid the complications
that arise from consideration
of the crystalline surface, by
introducing periodic
boundary conditions. Imagine
a crystal of chlorine ions that
iIs Ni ions long in the x-
direction, N2 long ill the ~-
direction, and N3 long in the
z-direction. The right surface
of the crystal is connected to
the left, the top to the bottom,
and the front to the back. This
Is difficult to imagine in three
dimensions, but in one
dimension such a structure
corresponds to a ring of ions
rather than a straight segment
with two ends. Closing the
ring adds an Hij matrix
element coupling the states
on the end ions. Periodic
boundary conditions greatly
simplify the problem
mathematically; the only
error that is introduced is the
neglect of the effect of
surfaces, which is beyond the
scope of the discussion here.
The approximate description
of the crystalline state, Eq. (2-
1), contains a basis set of Np




= N1N2 N3 states (for the Np
pairs of ions), and there are
Np solutions of Eg. (2-2).
These solutions can be
written down directly and
verified by substitution into
Eqg. (2-2). To do this we
define a wave number that
will be associated with each
state:

(2-3)

where Iii, n2, and n3 are
integers such that —Ni/2
<nx< Ni/2, .and X, vy, and
....are units vectors in the
three perpendicular
directions, as indicated in Fig.
2-1,b. Then for each Kk
allowed by Eq. (2-3), we can
write the coefficient Uj in the
form

Here the r7- = (ml X + m2y +
m3 z )a are the positions of
the ions. We see immediately
that there are as many values
of k as there are chlorine
ions; these correspond to the
conservation of  chlorine
electron states. We also see
that the wave functions for
states of different k are
orthogonal to each other.
Values for k run almost
continuously over a cubic
region of wave number space,
— n/a < kx < n/a, — n/a <ky
< n/a, and — n/a < kz < %l/a.
This domain of k is called a
Brillouin Zone. (The shape of
the Brillouin Zone, here




cubic, depends wupon the
crystal structure.) For a
macroscopic crystal the Ni
are very large, and the change
in wave number for unit
change in «j is very tiny. Eq.
(2-4) is an exact solution of
Eq. (2-2); however, we will
show it for only the simplest
approximation, namely, for
the assumption that the |sf)
are sufficiently localized that
we can neglect the matrix
element Hji = |S() unless (1)
two states in question are the
same (/' = j) or (2) they are
from nearest-neighbor
chlorine ions. For these two
cases, the magnitudes of the
matrix elements are, in
analogy with the molecular
case,

In cesium chloride the main
contribution to v2 comes
from cesium ion states acting
as intermediaries in a form
that can be obtained from
perturbation theory. We need
not be further concerned here
with the origin of v2 . (We
shall discuss the ionic crystal
matrix elements in Chapter
14.) For a particular value of j
in Eq. (2-2), there are only
seven values of i that
contribute to the sum: i=j
numbered as 0, and the six
nearest-neighbor chlorine s
states. The solution (valid for
any i) is




This energy varies with the
wave number over the entire
Brillouin Zone of Fig. 2-l,b.
The results are customarily
displayed graphically along
certain lines within that
Brillouin Zone. For example,
Fig. 2-2,a shows a variation
along the lines rx and TK of
Fig. 2-1,b.

The calculation of bands
based on p states proceeds in
much the same way. In
particular, if we make the
simplest possible
assumption—that each px
orbital is coupled by a matrix
element V'2 only to the px
orbitals on the nearest
neighbors in the x-direction
and to no other p orbitals, and
similarly for the py and pz
orbitals— then the calculation
can be separated for the three
types of states. (Otherwise it
would be necessary to solve
three simultaneous equations
together.) For the states based
upon the px orbitals,

For py orbitals and pz
orbitals, the second term is
2VV2 COS kya and 1V'2 COS
kza, respectively. The three
corresponding p bands are
also shown in Fig. 2-2,a. In
later

discussions we shall see that
by the addition of matrix
elements between orbitals
that are more distant it is




possible to obtain as accurate
a description of the true bands
as we like; for the present,
crude approximations are
sufficient to illustrate the
method.

Can we construct other bands,
for other orbitals, such as the
cesium s orbital? It turns out
that states that are not
occupied in the ground state
of the crystal are frequently
not well described in the
simplest LCAO descriptions,
but an approximate
description can be made in
the same way.

How would the simple bands
change if we could somehow
slowly eliminate the strong
atomic potentials that give
rise to the atomic states upon
which the bands are based?
The answer is given in Fig. 2-
2,b. The gaps between bands
decrease, including the gap
between the cesium bands
(not shown in Fig. 2-2,a) and
the chlorine bands. The
lowest bands have a
recognizable similarity to
each other in these two
extreme limits. The limit
shown in Fig. 2-2,b is in fact
the limit as the electrons
become completely free; the
lowest band there is given by
the equation for free-electron
Kinetic energy, E —
ti2k2/2m. The other bands in




Fig. 2-2,b are also free-
electron bands but are
centered at different wave
numbers (e.g., as E = h2(k —
g)2/2m), in keeping with the
choice to represent all states
by wave numbers in the
Brillouin Zone. Such free-
electron descriptions will be
appropriate later when we
discuss metals; for cesium
chloride, these descriptions
are not so far from LCAO
descriptions as one might
have thought, and in fact the
similarity will provide us, in
Section 2-D, with
approximate  values  for
interatomic matrix elements
such as v2 and V'l.

Since there are as many states
in each band as there are
chlorine ions in the crystal,
the four bands of Fig. 2-2,a,
allowing both spins in each
spatial state, can
accommodate  the  seven
chlorine electrons and one
cesium electron. All states
will be filled. This is the
characteristic feature of an
insulator; the state of the
system cannot be changed
without exciting an electron
with several electron volts of
energy, thus transferring it to
one of the empty bands of
greater energy. For that
reason, light with frequency
less than the difference




between bands, divided by h,
cannot be absorbed, and the
crystal will be transparent.
Similarly, currents cannot be
induced by small applied
voltages. This absence of
electrical conductivity results
from the full bands, not from
any localization of the
electrons at atoms or in
bonds. It is important to
recognize that bands exist in
crystals and that the electrons
are in states of the crystal just
as, in the molecule 02,
electrons form bonding and
antibonding molecular states,
rather than atomic states at
the individual atoms.

If, on the other hand, the
bands of cesium chloride
were as in Fig. 2-2,b, the
eight electrons of each
chlorine-cesium atom pair
would fill the states only to
the energy Ep shown in the
figure; this is called the Fermi
energy. Each band would
only be partly filled, a feature
that, as we shall see, is
characteristic of a metal.

2- B Electron Dynamics
In circumstances where the
electron energy bands are
neither completely full nor
completely  empty, the
behavior of individual
electrons in the bands will be
of interest. This is not the
principal area of concern in




this text, but it is important to
understand electron dynamics
because this provides the link
between the band properties
and electronic properties of
solids.

Consider a Brillouin Zone,
such as that defined for CsCl,
and an energy band E(k),
defined within that zone.
Further, imagine a single
electron within that band. If
its wave function is an energy
eigenstate, the time-
dependent Schroedinger
equation, Eq. (1-17), tells us
that

The magnitude of the wave
function and therefore also
the probability density at any
point do not change with
time. To discuss electron
dynamics we must consider
linear combinations of energy
eigenstates  of  different
energy. The  convenient
choice is a wave packet. In
particular, we construct a
packet, using states with
wave numbers near kO and
parallel to it in the Brillouin
Zone:

Taking the form of \i)h from
Egs. (2-1) and (2-3), and
treating k - kO as small, a
little algebra shows that at t =
0, Eq. (2-8) corresponds to
the state il/ko modulated by a
gaussian peak centered at r =




0. Furthermore, writing £(K)
= E(k0) + (dE/dk) m (k - kO0),
we may see that the center of
the gaussian moves with a
velocity

Thus it is natural to associate
this velocity with an electron
in the state ljjko. Indeed, the
relation is consistent with the
expectation value of the
current operator obtained for
that state.

We are also interested in the
effects of small applied
fields: imagine the electron
wave packet described above,
but now allow a weak, slowly
varying potential F(r) to be
present. The packet will work
against this potential at the
rate V « dv/dr. This energy
can only come from the band
energy of the electron,
through a change, with time,
of the central wave number
kO of the packet:

This is consistent with the
relation

This can, in fact, be
generalized to  magnetic
forces by replacing —dv/dx
by the Lorenz force, — e[—
¥<p + (v/c) X H],

Egs. (2-9) and (2-11)
completely  describe  the
dynamics of electrons in
bands wherever it is possible
to think in terms of wave
packets; that is, whenever the
fields are slowly varying




relative to interatomic
spacings. Notice that if we
think of fik as the canonical
momentum, then the band
energy, written in terms of p
= hk, plus the potential
energy, F(r), play precisely
the role of the classical
Hamiltonian, since with these
definitions, Egs. (2-9) and (2-
11), are precisely Hamilton’s
equations. Thus, in terms of
the energy bands E(k), we
may proceed directly by
using Kinetic theory to
examine the transport
properties of solids, without
thinking again of the
microscopic theory that led to
those bands. We may go even
further and use this classical
Hamiltonian to discuss a
wave function for the packet
itself, just as we constructed
wave functions for electrons
in Chapter 1. This enables us
to treat band electrons bound
to impurities in the solid with
methods similar to those used
to treat electrons bound to
free atoms; however, it is
Imperative to keep in mind
that the approximations are
good only when the resulting
wave functions vary slowly
with position, and therefore
their usefulness would be
restricted to weakly bound
impurity states.

Let us note some qualitative




aspects of electron dynamics.
If the bands are narrow in
energy, electron velocities
will be small and electrons
will  behave like heavy
particles. These qualities are
observed in insulator valence
bands and in transition-metal
d bands. In simple metals and
semiconductors the bands
tend to be broader and the
electrons are more mobile; in
metals the electrons typically
behave as free particles with
masses near the true electron
mass.

One question that might be
asked is: what happens when
an electron is accelerated into
the Brillouin Zone surface?
The answer is that it jumps
across the zone and appears
on the opposite face. It is not
difficult to see from Eq. (2-3)
that if, for example, m; is
changed by Ni
(corresponding to going from
a wave number on one zone
face to a wave number on the
opposite face) the phase
factors change by e2”'; the
states are therefore identical.
In general, equivalent states
are found on opposite zone
faces, and an electron
accelerated into one face will
appear at the opposite face
and continue to change its
wave number according to
Eq. (2-11).




2-  C Characteristic Solid
Types

Before discussing in detail
the wvarious categories of
solids, it is helpful to survey
them in general terms. This is
conveniently done by
conceptually constructing the
semiconductor silicon from
free atoms. In the course of
this, it will become apparent
how the metallicity of a
semiconductor varies with
row number in the periodic
table. With the general model
as a basis we can also
construct compounds  of
increasing polarity, starting
with silicon or germanium
and moving outward in the
same row of the periodic
table. Metallicity and polarity
are the two principal trends
shown by compounds and
will provide a suitable
framework for the main body
of our discussions.

Imagine silicon atoms
arranged as in a diamond
crystal structure but widely
spaced. This structure will be
discussed in the next chapter;
a two-dimensional analogue
of it is shown in Fig. 2-3. At
large internuclear distance,
two electrons are on each
individual atom in s states
and two are in p states. As the
atoms are brought together,
the atomic states broaden into




bands, as we have indicated.
(There are complications,
unimportant here, if one goes
beyond a one-electron
picture.) The s bands are
completely full, whereas the p
bands can accommodate six
electrons per atom and are
only one third full. This
partial filling of bands is
characteristic of a metal. As
the atoms are brought still
closer together, the
broadening bands finally
reach each other, as shown in
Fig. 2-3, and a new gap opens
up with four bands below and
four above. The bonding
bands below (called valence
bands) are completely full
and the antibonding bands
above (called con-duction
bands) are completely empty;
now the system is that of an
insulator or, when the gap is
small, of a semiconductor. In
Chapter 1, it was noted that a
crossing of bonding and
antibonding states does not
occur in the simple diatomic
molecules, but that it can in
larger molecules and in
solids, as shown here.

The qualitative change in
properties associated with
such crossing is one of the
most  important  concepts
necessary for an
understanding of chemical
bonding, yet




FIGURE 2-3

The formation of bands in a
homopolar tetrahedral
semiconductor as the atoms
are brought together.
Internuclear distance
decreases to the right.

it has not Dbeen widely
examined until  recently.
Particular attention has been
brought by Woodward and
Hoffmann (1971) in their
discussion  of  reactions
between molecules. In that
context, Woodward and
Hoffmann found that when
bonding and antibonding
states are equally occupied, as
in Be2, discussed earlier, no
bonding energy is gained and
the atoms repel each other.
Only when the atoms are
close enough that upper
bonding levels can surpass or
cross the energy of the lower
antibonding levels above can
bonding result. In some such
cases (not Be2) a stably
bonded system can Dbe
formed, but an energy barrier
must be overcome in order to
cause the atoms to bond.
Reactions in which energy
barriers must be overcome
are called “symmetry
forbidden reactions.” (See
Woodward and Hoffmann,
1971, p. Off, for a discussion
of 2C2H4 -> C4H8.) The
barrier remains, in fact, when




there is no symmetry. In
silicon, illustrated in Fig. 2-3,
the crossing occurs because
high symmetry is assumed to
exist in the atomic
arrangement. Because of this
symmetry, the matrix
elements of the Hamiltonian
are zero between wave
functions of states that are
dropping in energy and those
that are rising (ultimately to
cross each other). If, instead,
the silicon atoms were to
come

m4  Increasing interatomic
distance (d)

FIGURE 2-4

The variation of energy of
two levels which cross, as a
function of atomic spacing d,
in a symmetric situation, but
do not cross when there is not
sufficient symmetry.

together as a distorted lattice
with  no symmetry, the
corresponding matrix
elements of the Hamiltonian
would not be zero, and
decreasing and increasing
energy levels would not cross
(see Fig. 2-4).

In an arrangement of high
symmetry, a plotting of total
energy as a function of d may
show a cusp in the region
where electrons switch from
bonding to antibonding states;
a clear and abrupt qualitative
change in behavior coincides




with this cusp region. In an
unsymmetric  arrangement,
change in total energy as a
function of d is gradual but at
small or at large internuclear
distances, energies  are
indistinguishable from those
observed in  symmetric
arrangements. Thus, though
the crossing is artificial (and
dependent on path), the
qualitative difference, which
we associate with covalent
bottcling, is not. For this
reason, it is absolutely
essential to know on which
side of a diagram such as Fig.
2-3 or Fig. 2-4 a particular
system lies. For example, in
covalent silicon, bonding-
antibonding splitting is the
large term and the sp splitting
is the small one. That
statement explains why there
IS a gap between occupied
states and unoccupied states,
which makes covalent silicon
a semiconductor, and
knowing this guides us in
numerical  approximations.
Similarly, in metals, bonding-
antibonding splitting is the
small term and the sp splitting
the large term; this explains
why it is a metal and guides
our numerical approximations
in metals.

If we wished to make full,
accurate machine calculations
we would never need to make




this distinction; we could
simply look at the results of
the full calculation to check
for the presence of an energy
gap. Instead, our methods are
designed to result in intuitive
understanding and
approximate calculations of
properties, which will allow
us to guess trends without
calculations in some cases,
and which will allow us to
treat complicated compounds
that would otherwise be
intractable by full, accurate
calculation in other cases.

The diagram at the bottom of
Fig. 2-3 was drawn to
represent silicon but also,
surprisingly, illustrates the
homopolar series of
semiconductors c, Si, Ge, and
Sn. The internuclear distance
iIs smallest in diamond,
corresponding to the largest
gap, far to the right in the
figure.  The internuclear
distance  becomes larger
element by element down the
series,  corresponding  to
progression leftward in the
figure to tin, for which the
gap is zero. (Notice that in a
plot of the bands, as in Fig. 2-
2, the gap can vary with wave
number. In tin it vanishes at
only one wave number, as
will be seen in Chapter 6, in
Fig. 6-10.) Nonetheless we
must regard each of these




semiconductors—even tin—
as a covalent solid in which
the dominant energy is the
bonding-antibonding
splitting. We can define a
“metallicity” that increases
from ¢ to Sn, reflecting a
decreasing ratio of bonding-
antibonding splitting to sp
splitting; nevertheless, if the
structure is tetrahedral, the
bonding-antibonding splitting
has won the contest and the
system is covalent.

The discussion of Fig. 2-3 fits
well  with the LCAO
description but the degree to
which a solid is covalent or
metallic is independent of
which basis states are used in
the calculation. Most of the
analysis of covalent solids
that will be made here will be
based upon linear
combinations of  atomic
orbitals, but we also wish to
understand them in terms of
free-electron-like  behavior.
(These two extreme
approaches are illustrated for
cesium chloride in Fig. 2-2.)
Free-electron-like behavior is
treated in Chapter 18, where
two physical parameters will
be designated, one of which
dominates in the covalent
solid and one of which
dominates in the metallic
solid. It can be useful here to
see how these parameters




correspond to the concepts
discussed so far.

In Fig. 2-2, the width of the
bands, approximately Ep —
Es, corresponds to the kinetic
energy, £F, of the highest
filled states. The bonding-
antibonding splitting
similarly corresponds to the
residual splitting between
bands which was suppressed
completely in Fig. 2-2,b. For
metals, this residual splitting
IS described by a
pseudopotential. In metals,
the small parameter is the
pseudopotential divided by
the Fermi energy
(corresponding to the ratio of
bonding-antibonding splitting
to sp splitting, or the
reciprocal of the metallicity).
In the covalent solids, on the
other hand, we would say that
the pseudopotential is the
dominant aspect of the
problem and the Kinetic
energy can be treated as the
small correction. In fact, in
Chapter 18 the
pseudopotential approach will
be applied to simple
tetrahedral  solids;  there,
treating Kinetic energies as
small compared to the
pseudopotential leads to a
simple description of the
covalent bond in which a one-
to-one correspondence can be
obtained between  matrix




elements of the
pseudopotential  (that s,
between plane waves) and
matrix elements of the
Hamiltonian between atomic
states. The correspondence
between these two opposite
approaches is even more
remarkable than the similarity
between the LCAO and free-
electron bands in Fig. 2-2,
though it is the latter
similarity which will provide
us with LCAO matrix
elements.

Now, as an introduction to
polar semiconductors, let us
follow the wvariation of
electronic structure,
beginning with an elemental
semiconductor and moving to
more polar solids. For this,
germanium is a better starting
point than silicon, and in
order of increasing polarity
the series is Ge, GaAs, ZnSe,
and CuBr. The total number
of electrons in each of these
solids is the same (they are
isoelectronic) and the
structure is the same for all;
they differ in that the nuclear
charge increases on one of the
atoms (the anion) and
decreases on the other (the
cation). The qualita-

FIGURE 2-5

Change in the bands as a
homopolar semiconductor is
made increasingly polar, and




then as the two atom types
are made more alike without
broadening the levels.

tive variation in electronic
structure in this series is
illustrated in Fig. 2-5,a. Bear
in mind that even in nonpolar
solids there are two types of
atomic sites, one to the right
and one to the left of the
horizontal bonds in the figure.
In polar solids the nuclear
charge on the atom to the
right is increased, compound
by compound. This will tend
to displace the bond charges
(electron density) toward the
atom with higher nuclear
charge (center diagram in Fig.
2-5,a) and, in fact, the corre-
sponding transfer of charge in
most cases is even larger than
the change in nuclear charge,
so the atom with greater
nuclear charge should be
thought of as negative; hence,
the term anion is used to
denote the nonmetallic atom.
At high polarities most of the
electronic charge may be
thought of as residing on the
nonmetallic atom, as shown.
The most noticeable change
in the energy bands of Fig. 2-
5,b, as polarity increases, is
the opening up of a gap
between the valence bands as
shown. There is also a
widening of the gap between
valence and conduction bands




and some broadening of the
valence band. In extremely
polar solids, at the center of
the figure, the valence band,
to a first approximation, has
split into an anion s band and
three narrow anion p bands.
The conduction bands in this
model—the unoccupied
bands—also split into s bands
and p bands, but in a real
crystal of high polarity, the
bands for unoccupied orbitals
remain very broad and even
free-electron-like.

We can complete the
sequence of changes in the
model shown in Fig. 2-5 by
pulling the atoms apart to
obtain isolated free atom
energies. Perhaps the simplest
path is that shown on the
right side of Fig. 2-5, where
the metallic and nonmetallic
atoms become more alike and
where the individual energy
bands remain narrow. Where
the levels cross, electrons of
the anion fill available
orbitals of the cation; the
crossing results in a reduction
of the atomic charges to zero.
By comparing Fig. 2-5 with
Fig. 2-3, we can see that there
IS no discontinuous change in
the qualitative nature of the
electronic structure in going
from homopo- lar to highly
polar solids of the same
crystal structure (Fig. 2-5),




but that discontinuity is
encountered in going from
the atomic electronic
structure to the covalent one
(Fig. 2-3). Properties vary
smoothly with polarity over
the entire range. This feature
has been apparent for a long
time and led Pauling to define
lonicity in terms of energies
of formation in order to
provide a scale for the trend
(Pauling, 1960). Coulson et
al. (1962) redefined ionicity
in terms of an LCAO
description much like the one
we shall use in Chapter 3.
Phillips (1970) gave still a
third definition in terms of the
dielectric ~ constant. ~ The
formula for polarity of a
simple bond, introduced in
Eg. (1-37), is essentially
equivalent to the ionicity
defined by Coulson, but the
ionicities defined by Pauling
and by Phillips are to a first
approximation proportional to
the square of that polarity.
We will use the term polarity
to describe a variation in
electronic structure in
covalent solids, and the
particular values defined by
Eqg. (1-37) will directly enter
the calculation of some
properties. We do not use
polarity to interpolate
properties from one material
to another. However, such




interpolative approaches are
commonly used, and degree
of ionicity or polarity is
frequently used to rationalize
trends in properties.
Therefore it is best to
examine  that  approach
briefly.  The  distinction
between these two
approaches is subtle but of
fundamental importance.

We have seen that there are
trends with polarity and with
metallicity among the
tetrahedral solids. One of the
trends is the decrease, with
increasing metallicity and
increasing polarity, of the
angular rigidity that stabilizes
the open tetrahedral structure.
Thus, if either increases too
far, the structure collapses to
form a close- packed
structure. When this happens,
the new system has a
qualitatively different
electronic  structure, and
different  concepts and
approximations become
appropriate. We may think of
this as analogous to a phase
diagram, as illustrated in Fig.
2-6. If a combination of
atoms (e.g.,, Litium and
flourine) is too polar, a close-
packed rocksalt structure is
formed. LiF is an ionic
crystal and most frequently
the best initial approximation
to the electronic structure is




based on independent ions,
which  we used in the
discussion of the cesium
chloride energy bands. lonic
solids can be distinguished
from covalent solids by their
characteristic crystalline
structures, a topic that will be
taken up later.

When the metallicity is too

great, a close-packed
structure again becomes more
Polarity

FIGURE 2-6

A schematic phase diagram
indicating the three
qualitatively different types
of solids discussed in the
book. The phase boundaries
are topologically correct but
details of shape are only
schematic.

Stable. In this case the
electronic structure ordinarily
approximates that of a free-
electron gas and may be
analyzed  with  methods
appropriate to free-electron
gases. Again, the crystal
structure is the determining
feature for the classification.
When tin has a tetrahedral
structure it is a covalent solid,
when it has a close- packed
white-tin structure, it is a
metal. Even silicon and
germanium, when melted,
become close-packed and
liquid metals.

To complete the
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phase




diagram,” there must also be
a line separating metallic and
lonic systems. Materials near
this line are called
intermetallic compounds;
they can lie on the metallic
side (an example is Mg2Pb)
or on the ionic side (for
example, CsAu).
Consideration of intermetallic
compounds takes the trends
far beyond the isoelectronic
series that we have been
discussing.

The sharp distinction between
lonic and covalent solids is
maintained in a
rearrangement of the periodic
table of elements made by
Pantelides and  Harrison
(1975). In this table, the alkali
metals and some of their
neighbors are transferred to
the right (see Fig. 2-7). The
elements of the carbon
column (column 4) and
compounds made  from
elements to either side of that
column (such as GaAs or
CdS) are covalent solids with
tetrahedral structures.
Compounds made  from
elements to either side of the
helium column of rare gases
(such as KC1 or CaO) are
ionic compounds with
characteristic ionic structures.
A few ionic and covalent
compounds do not fit this
correlation; notably, MgO,




AgF, AgCl, and AgBr are
jonic compounds, and MgS
and MgSe can occur in either
lonic or covalent structures.
(Notice that Mg is found both
in column 2 and column 10).
The interesting isoelectronic
series for ionic compounds
will be those such as Ar,
KC1, CaS, and ScP, obtained
from argon Dby transferring
protons between argon nuclei.
In this case the ion receiving
the proton is the metallic ion
and the electronic structure is
thought of as a slightly
distorted rare gas structure.
This model leads to a theory
of ionic-compound bonding
that is even simpler than the
bonding theory for covalent
solids.  The  Pantiledes-
Harrison rearrangement of the
periodic table is used as the
format for the Solid State
Table, where the parameters
needed for the calculation of
properties have been
gathered.

2- D Solid State Matrix
Elements

Almost all of the discussion
of covalent and ionic solids in
this book is based upon
descriptions of electron states
as linear combinations of
atomic orbitals. In order to
obtain numerical estimates of
properties we need numerical
values for the matrix




elements giving rise to the
covalent and polar energies
for the properties being
considered. There is no best
choice for these parameters
since a trade-off must be
made between simplicity (or
universality) of the choice
and accuracy of the
predictions that result when
they are used. Clearly if
different values are used for
each property of each
material, exact values of the
properties can be
accommodated. We shall
follow a procedure near the
opposite extreme, by
introducing four universal
parameters in terms of which
all interatomic matrix
elements between s and p
states for all systems can be
estimated. We shall also use a
single set of atomic s and p
orbital energies throughout.
These are the principal
parameters needed for the
entire range of properties,
though the accuracy of the
corresponding predictions is
limited.

One might at first think that
Interatomic matrix elements
could be calculated by using
tabulated atomic  wave
functions and  potentials
estimated for the various
solids. Such approaches have
a long history of giving poor




numerical results and have
tended to discredit the LCAO
method itself. However, the
difficulty seems to be that
though true atomic orbitals do
not provide a good basis for
describing electronic
structure, there are atomiclike
orbitals that can provide a
very good description. One
can therefore obtain a useful
theory by using LCAO
formalism but obtaining the
necessary matrix elements by
empirical or semiempirical
methods.

One of the oldest and most
familiar such approaches is
the  “Extended  Hueckel
Approximation”  (Hoffman,
1963.) Let us take a moment
to examine this approach,
though later we shall choose
an alternative scheme.
Detailed rationalizations of
the approach are given in
Blyholder and  Coulson
(1968), and in Gilbert (1970,
p. 244); a crude intuitive
derivation will suffice for our
purposes, as follows. We seek
matrix elements of the
Hamiltonian between atomic
orbitals on adjacent atoms,
(p\H\cc). If | a) were an
eigenstate of the Hamiltonian,
we could replace HI a) by
Eala), where £a is the
eigenvalue. Then if the
overlap (,P\oc) is written




Spa, the matrix element
becomes EaSpa. This,
however, treats the two
orbitals differently, so we
might use the average instead
of Ea. Finding that this does
not give good values, we
introduce a scale factor G, to
be adjusted to fit the
properties of heavy
molecules; this leads to the
extended Hueckel formula:

(.PiHiu) = GSpa(ep + ea)/2.

(2-12)
These matrix elements are
substituted into the

Hamiltonian matrix of Eq. (2-
2) for a molecule, or a cluster
of atoms, and the matrix is
diagonalized. A value of G =
1.75 is usually taken; the
difference from unity
presumably, arises from the
peculiar manner in which
nonorthogonality IS
incorporated.

The  Extended  Hueckel
Approximation and a wide
range of methods that may be
considered as descendents of
it (e.g., the CNDO method—
Complete Neglect of
Differential Overlap) have
enjoyed considerable success
in  theoretical chemistry.
Some machine calculation is
required, first in determining
the parameters s from
tabulated wave functions or
numerical approximations to




them, and second in solving
the resulting simultaneous
equations, as at Eq. (2-2).
This difficulty is exacerbated
by the fact that s drops rather
slowly  with Increasing
distance between atoms, so a
very large number of matrix
elements are required. The
computation required for any
given system is very small,
however, in comparison with
what is required to obtain
more  accurate  solutions.
Once an Extended Hueckel
Approximation  has  been
made, direct machine
computations of any property
can be made and alternatives
to the simplest
approximations—e.g., Eq. (2-
12)— can be made which
improve agreement with the
experimental values. Such
improvements are described
in detail by Pople and
Beveridge (1970). Combining
descriptions of electronic
structure that are essentially
correct, with the use of high-
speed computers, and the
results of a number of years
of trial and error in correcting
the simplest approximations,
probably provide the most
accurate predictions of the
diverse properties of complex
systems that are presently
available. For isolated
properties, such as the energy




bands of solids, other
computer methods are much
more reliable and accurate.
The approach that will be
used in this text is different,
in that the description of
electronic structures is greatly
simplified to provide a more
vivid understanding of the
properties; numerical
estimates of properties will be
obtained with calculations
that can be carried through by
hand rather than machine. We
shall concentrate on the
“physics” of the problem. In
this context a semiempirical
determination  of  matrix
elements is appropriate. The
first attempt at this (Harrison,
1973c) followed Phillips
(1970) in obtaining the
principal matrix element v2
from the measured dielectric
constant. A second attempt
(Harrison and Ciraci,1974)
used the principal peak
in the optical reflectivity of
the covalent solids, which we
shall come to later, as the
basis for the principal matrix
element; this led to the
remarkable finding that v2
scaled from material to
material quite accurately as
the inverse square of the
interatomic distance, the bond
length d, between atoms. A
subsequent study of the
detailed form of valence




bands (Pantelides and
Harrison, 1975), combined
with v2 determined from the
peak in optical reflectivity,
gave a complete set of
interatomic matrix elements
for covalent solids with the
finding that all of them varied
approximately as d~2 from
material to material.

The reason  for  this
dependence recently became
very clear in a study of the
bands of covalent solids by
Froyen and Harrison (1979).
They took advantage of the
similarity of the LCAO bands
and free-electron  bands,
noted in Fig. 2-2. By equating
selected energy differences
obtained in the two limits,
they derived formulae that
had this dependence for all of
the interatomic matrix
elements. We may in fact see
in detail how this occurs by
considering Fig. 2-2. The
lowest band, labelled s in Fig.
2-2,a, was given by Eqg. (2-5).
For k in an x-direction, it
becomes E(k) =es — 4V2 —
2V2 cos ka, varying by 4VZ
from r (where k = 0) to X
(where k = %/a). The free-
electron energy in Fig. 2-2,b
varies by (h2/2m)(n/a)2 over
the same region of wave
number space for the lowest
band. Thus, if both limiting
models are to be appropriate,




and therefore consistent with
each other, it must follow that
v2 = t]h2/{ma2) with rj =
7t2/8 = 1.23. This predicts the
dependence upon the inverse
square of interatomic distance
and a coefficient that depends
only upon crystal structure. A
similar comparison of the
second band gives the same
form with a different
coefficient for the matrix
element v'2 between p states.
This simplest model is not so
relevant, but it illustrates the
point nicely. Before going to
more relevant systems we
must define more precisely
the notation to be used for
general interatomic matrix
elements.

These matrix elements will be
important throughout the text;
they are specified here
following the conventions
used by Slater and Koster
(1954) and used earlier while
discussing  the  diatomic
molecule. In general, for a
matrix  element  <a|//|/j>
between orbitals on different
atoms we construct the vector
d, from the nucleus of the
atom of which | a) is an
orbital (the “ left ” atom) to
that of the atom of which 1/?)
is an orbital (the “right”
atom). Then spherical
coordinate ~ systems  are
constructed with the z-axes




parallel to d, and with origins
at each atom; the angular
form of the orbitals can be
taken as Y?(9, ¢) for the left
orbital and V1! (O', Q) for the
right orbital. The angular
factors depending upon ¢
combine to (Notice that the
wave function (a | is the
complex conjugate of | a).)
The integration over a gives
zero unless m' = m. Then all
matrix  elements  (a|H||S)
vanish unless rri = m, and
these are labelled by O, n, or
O (in analogy with s, p, d) for
m —1). 1, and 2 respectively.
Thus, for example, the matrix
element Vspa corresponds to
1=0,1=1, m=0. Slater and
Koster (1954) designated
matrix elements by enclosing
the indices within
parentheses; thus, the element
VWm used in this book and
their (Wm) are the same.

We saw how formulae for the
matrix elements can be
obtained by equating band
energies from LCAO theory
and from free-electron theory
in Fig. 2-2. Froye.l and
Harrison (1979) made the
corresponding treatment of
the tetrahedral solids, again
including only matrix
elements between nearest-
neighbor atoms. The form of
their results is just as found
for the simple cubic case




Notice that the subscript m is
a quantum number but the m
in the denominator
Dimensionless coefficients in
Eg. (2-13)  determining
approximate interatomic
matrix elements.

Theoretical values
Coefficient Simple cubic
structure  Tetrahedral
structure  Adjusted value*
NOTE: Theoretical values
(Froyen and Harrison, 1979)
were obtained by equating
band energies from | (\0 and
free-eiectron  theory, as
described in the text.
Adjusted values (Harrison,
1976b, 1977a) were obtained
by fitting tile energy bands of
silicon and germanium; the
adjusted values appear in the
Solid State Table.
is the electron mass. The
length d is the internuclear
distance, equal to a in the
simple cubic structure. If d is
given in angstroms, this form
Is easily evaluated, using
h2/m = 7.62 eV-A2. In Table
2-1 we give the values of the
dimensionless  cnefficients
obtained by Froyen and
Harrison for both the simple
cubic and Id rahedral
structures. The calculation is
closely related to that just
carried through for the bands
of Fig. 2-2, and in fact, the
VSS<J matrix element for the




simple cubic case is just the
negative of the v2 value
evaluated there, leading to the
t]ssa = — 7t2/8. wv shall see
in Section 18-A exactly how
the other theoretical
coefficients  listed  were
obtained.

Motice that the coefficients
obtained for the tetrahedral
structure differ from those
obtained for the simple cubic
structure and indeed the
coefficients for any mu;
structure depend somewhat
upon which band energies are
used. However, the
differences are not great and
we shall neglect them. The
coefficients we shall use are
close to those given by
Froyen and Harrison (1979)
for the tetrahedral structure,
but were obtained somewhat
earlier by Harrison (1976b),
who adjusted tliL'm to give
the interatomic matrix
elements found by Chadi and
Cohen (1975) in fitting the
known energy bands of
silicon and germanium. The
average of the coefficients so
obtained for silicon and
germanium is listed in Table
2-1 in the column headed
“Adjusted,” and these are the
values listed in the Solid State
Table and used throughout
this text. Also listed in the
Solid State Table are forms




lor predicting matrix elements
involving atomic d states,
formulae  which will be
developed in Chapter 20.

The coefficients in Table 2-1
have been obtained entirely in
the context of nearest-
neighbor coupling between
states. They would have been
different if a

*For recent developments,
see the Preface to the Dover
Edition.

TABLE 2-2

Atomic term values from
Herman and Skillman (196.1).
or extrapolated from their
values.

Atomic term value (eV)
second-neighbor LCAO fit
had been used, for example,
and it would not therefore be
appropriate to use them if the
description of the bands were
to be extended to second-
neighbor interactions.

It will ordinarily be more
convenient in solids to use the
forms for angular
dependence, x/r, y/r, and z/r,
as in Eqg. (1-20), rather than
the forms Y’1(0, <p). Then in
order to obtain  matrix
elements involving these
orbitals, we need to expand
the

NOTE: These values appear
also in the Solid State Table.
p orbital in question in terms
of 17, which are defined with




respect to the coordinate
system discussed above. For
p orbitals this is quite simple.
For the simplest geometries it
leads to the identification of
matrix elements shown in the
upper four diagrams of Fig.
2-8. For arbitrary geometries
the result depends upon the
direction cosines giving the
vector d in the coordinate
system of X, y, and z; this is
illustrated at the bottom in
Fig. 2-8. The corresponding
transformations for d
FIGURE 2-8

The four types of interatomic
matrix elements entering the
study of s- and p-bonded
systems are chosen as for
diatomic molecules as shown
in Fig. 1-11. Approximate
values for each are obtained
from the bond length, or
internuclear distance, i/, by
VIj — riijtS/md2, with tiij
taking values given in Table
2-1 and in the Solid State
Table at the back of the book.
When p orbitals are not
oriented simply as shown ill
the upper diagrams, they may
be decomposed geometrically
as vectors in order to evaluate
matrix elements as illustrated
in the bottom diagrams. It can
be seen that the interatomic
matrix element at the bottom
right consists of cancelling
the contributions that lead to




a vanishing matrix element.
orbitals as well as p orbitals
will be given in detail in
Table 20-1, but for s and p
orbitals the simple vector
transformations illustrated in
Fig. 2-8 should be sufficient;
the results can be checked
with Table 20-1.

When we give the Froyen-
Harrison analysis in Chapter
18-A, we shall see that the
same procedure can give an
estimate of the energy
difference Ep — £s. It is of
the correct general magnitude
but fails to describe the
important trend in the energy
bands among the covalent
solids ¢, Si, Ge, and Sn.
Furthermore, it does not
provide a means of estimating
term-value differences such
as scp — e*“ in polar solids.
Thus, for these intra-atomic
parameters we shall use
calculated  atomic  term
values, which are listed in
Table 2-2. A comparison
shows them to be roughly
consistent with term values
obtained in the fit to known
bands done by Chadi and
Cohen (1975) for the polar
semiconductors as well as for
silicon and germanium.

This  particular  set  of
calculated values (by Herman
and Skillman, 1963) was
chosen since the




approximations used in the
calculation were very similar
to those used in determining
the energy bands that led to
the parameters in Table 2-1.
The values would not have
differed greatly if they were
taken from Hartree-Fock
calculations (such values are
tabulated in Appendix A).
Values based on Hartree-
Fock calculations have the
advantage of giving good
values for d states. Therefore,
though the calculations in this
book are based upon the
Herman-Skillman values, for
some applications the
Hartree-Fock values may be
better suited.

Notice that as absolute
numbers the atomic energy
values have only limited
meaning in any  case.
Imagine, for example, that the
value Ep for oxygen correctly
gives the energy required to
remove an electron from an
isolated oxygen atom in
space. If this atom is brought
close to the surface of a metal
(or, almost equivalently, to
the surface of a covalent solid
with  a large dielectric
constant) but not close
enough for any chemical
bonding to take place, how
much energy is now required
to remove the electron from
the oxygen? One way to




calculate this is to move the
neutral atom to infinity, with
no work required, remove the
electron requiring £p, and
then return the oxygen ion to
its initial position; as it
returns it gains an energy
e2/4d from the image field,
where d is the final distance
from the surface. The
resultant correction of fip,
with d equal to 2 A, is 1.8 eV,
far from negligible. The
precise value is uncertain
because of the dielectric
approximation, the
uncertainty in the d used, and
other effects, but we may
expect  that  significant
corrections of the absolute
energies are needed relative
to the values in vacuum. The
reason that the values are
nevertheless useful as
parameters is that in solids
such corrections are similar
for all atoms involved and the
relative values are
meaningful.

How do the values obtained
from Tables 2-1 and 2-2
compare with the values
obtained directly by fitting
energy bands? This
comparison is made in Table
2-3 for the covalent systems
studied by Chadi and Cohen.
Agreement is semiquantita-
tive throughout and all trends
are reproduced except the




splitting of values for VsptT
in the compounds. The
discrepancies are comparable
to the differences between
different fits (the most recent
fits are used here), thus
justifying the use of the
simple forms in our studies.
Significantly different values
are obtained if one includes a
greater number of matrix
elements in the fit (Pandey,
1976) and  would  be
appropriate if we were to
include these matrix elements
in the calculation of
properties other than the
bands themselves.
Significantly different values
have also been given by
Levin (1974).

The coefficients from Table
2-1 and atomic term values
from Table 2-2 will suffice
for calculation of an
extraordinarily wide range of
properties of covalent and
ionic solids using only a
standard hand-held calculator.
This is impressive testimony
to the simplicity of the
electronic  structure  and
bonding in these systems.
Indeed the same parameters
gave a semiquantitative
prediction of the one-electron
energy levels of diatomic
molecules in Table 1-1.
However, that theory is
intrinsically approximate and




not always subject to
successive correc-

TABLE 2-3

Matrix elements from the
Solid State Table, compared
with values (in parentheses)
from fits to individual bands.
All values are in eV.
SOURCES of data in
parentheses: ¢ from Chadi
and Martin (1976); Si and Ge
from Chadi and Cohen
(1975); GaAs and ZnSe from
Chadi and Martin (1976).
NOTE: Where two values of
Vspr are given for
compounds, the first vaiue is
for an s state in the
nonmetallic atom and p state
in the metallic atom. States
are reversed for the second
value. Where two values of
(«¢p — cs)/4 are listed, the
first value is for the metallic
atom, the second for the
nonmetallic atom.

tions and improvements. In
most cases our predictions of
properties will be accurate on
a scale reflected in Table 2-3,
and though the introduction
of further parameters allows a
more accurate fit to the data,
it may be that improvements
at a more fundamental level
are required for a more
realistic treatment and that
these improvements cannot
be made without sacrificing
the conceptual and




computational simplicity of
the picture that will be
constructed in the course of
this book.

Before proceeding to
guantitative studies of the
covalent  solids it is
appropriate to comment on
the concept of
“electronegativity,”
introduced by Pauling to
denote the tendency of atoms
to attract electrons to
themselves (discussed
recently, for example, by
Phillips, 1973b, p. 32). It may
be an unfortunate term since
the positive terminal of a

battery has greater
electronegativity than the
negative terminal.

Furthermore, it was defined
to be dimensionless rather
than to have more natural
values in electron volts. It
would be tempting to take the
hybrid energy values of Table
2-2 as the definition of
electronegativity, but it will
be seen that in some
properties the energy Ep is a
more appropriate measure.
Therefore it will be a wiser
choice to use the term only
qualitatively.  Then  from
Table 2-2 (or from Fig. 1-8)
we see that the principal trend
IS an increase in
electronegativity with
increasing atomic number




proceeding horizontally from
one inert gas to the next (e.g.,
from neon, Na, Mg, Al, Si, p,
s, and Cl to argon). In
addition, the elements
between helium and neon
have greater electronegativity
than the heavier elements. It
iIs useful to retain
electronegativity ” to describe
these two qualitative trends.
2- E  Calculation  of
Spectra

We have seen that in solids,
bands of electron energies
exist rather than the discrete
levels of atoms or molecules.
Similarly there are bands of
vibration frequencies rather
than discrete modes. Thus, to
show electron eigenvalues, a
curve was given in Fig. 2-2
rather than a table of values.
However, a complete
specification of the energies
within the bands for a three-
dimensional solid requires a
three-dimensional plot and
that cannot be made; even in
two dimensions an attempt is
of limited use. Instead, a
convenient representation of
electronic structure can be
made by plotting the number
of states, per unit energy, as a
function of energy. This loses
the information about, for
example, electron velocity,
since that requires a
knowledge of energy as a




function of wave number.
However, it is all that is
needed to sum the energies of
the electrons for given atomic
arrangements.

Calculation of such a
spectrum might seem
straightforward, but if done
by sampling, it requires an
inordinate amount of
calculation. For example, to
produce a plot we might
divide the energy region of
interest into one thousand
intervals and then evaluate
the energies (as we did in
Section 2-A) over a closely
spaced grid in the Brillouin
Zone, keeping track of the
number  of  eigenvalues
obtained in each interval. A
great increase in efficiency
can be obtained by noting that
the energy bands have the full
symmetry of the Brillouin
Zone—in the case of CsCl, a
cube—so that the entire
Brillouin Zone need not be
sampled. One could sample
one half the zone and
multiply the results by two,
one eighth and multiply by
eight, or in fact, for a cube,
one forty-eighth  suffices.
However, even in a sample of
thousands of values, the
resulting histogram  shows
large statistical fluctuations.
Therefore an  alternative
approach is required.




The approach most
commonly used, and used
extensively in the curves in
this book, is the Gilat-
Raubenheimer scheme
(Raubenheimer and Gilat,
1966). In this scheme, the
idea is to replace the true
bands by approximate bands,
but then to calculate the
density of levels for that
spectrum accurately. This is
done by dividing up the
Brillouin Zone, or a forty-
eighth of the zone for cubic
symmetry, into cells; of the
order of fifty may be
appropriate;  Raubenheimer
and Gilat used cells in the
shape of cubes. They then fit
each band in each cell by a
linear expression, Ek = EO +
Al kx + A2ky + A3kz, with k
measured from the center of
the cell. Then the energy
region of interest for the
system is divided into some
1000 energy intervals and the
contribution to each of these
intervals is accurately and
analytically obtained from the
linear values of the bands in
each cell. This is illustrated
for one dimension in Fig. 2-9.
We see that the distribution of
the approximate bands is
obtained exactly. This turns
out to eliminate most of the
statistical error and to give
very good results.




In the Gilat-Raubenheimer
scheme it is inconvenient to
obtain the necessary values of
the gradient of the energy
with respect to wave number
in each cell, and the cubes do
not fit the Brillouin Zone
section exactly, so there are
problems in calculating the
energy at the surface of the
section. For this reason
Jepsen and Andersen (1971)
and later, independently,
Lehman and Taut (1972)
replaced

(¢)  Number of states
contributed in each interval
FIGURE 2-9

A schematic representation of
the Gilat-Raubenheimer
scheme  for  calculating
densities of states. The energy
bands (a) are replaced by
linear bands (b) in each cell.
The contribution by each cell
to each of a set of small
energy intervals (c) is then
obtained analytically.

cubes by tetrahedra and wrote
the distribution of energies in
terms of the values at the four
comers. A clear description of
this much simpler approach is
given by Rath and Freeman
(1975), who include the
necessary formulae. It is also
helpful to see one manner in
which the Brillouin Zone can
be divided into cells. This is
shown in Fig. 2-10, This




procedure has been discussed
also by Gilat and Bharatiya
(1975).  Another  scheme,
utilizing a more accurate
approximation to the bands,
has been considered recently
by Chen (1976).

In some sense this iIs a
computational detail, but the
resulting curves are SO
essential to solid state
properties that the detail is
important. Once a program
has been written for a given
Brillouin Zone, any of the
spectra for the corresponding
structure can be efficiently
and accurately obtained from
the bands themselves.
PROBLEM 2-1 Calculating
one-dimensional energy
bands

Let us make an elementary
calculation of energy bands,
using the notation of LCAO
theory. For many readers the
procedure will be familiar.
Consider a ring of N atoms,
each with an s orbital. We
seek an electronic state in the
form of an LCAO,

where the integers a number
the atoms. We can evaluate
the expectation value of the
energy, considering all atoms
to be identical, so (a | HI a) =
R is the same for all a. We
can also neglect all matrix
elements (a\H\p'), except if a
and /? differ by one; we write




that

FIGURE 2-10

(@ The body-centered-
cubic  Brillouin  Zone s
divided into 48 equivalent
pyramidal segments. (Two
such pyramids are required
for  face-centered  cubic
zones.) (b) The pyramid is cut
by equally spaced planes
parallel to the base, (c) Most
of the slab may be subdivided
Into triangular prisms. An
edge is left over on the right
which can be divided into
triangular prisms with one
tetrahedron left over. Each
triangular prism

(d) may finally be divided
into three tetrahedra, (e). This
divides the Brillouin Zone
entirely into tetrahedra of
equal volume. The bands are
taken to be linear in wave
number within each
tetrahedron.

We shall treat the uj as
independent of ua and
minimize the expression with
respect to UI, giving a linear
algebraic equation for each a.
(@ Show that for any
integer it there is a solution
for all of these equations of
the form

(b) Give the energy as a
function of n, and sketch it as
a function of n/N for large N.
Include positive and negative
n.




(c) Obtain the value of A
that normalizes the electron
state.

(d Show that for an n
outside the range — N/2 <n<
N/2, the electron state
obtained is identical to that
for some n within this range
(within the Brillouin Zone). It
suffices to prove that for
given n the ua are unchanged
by the addition of N to n.
PROBLEM 2-2 Electron
dynamics

Consider an electron in a one-
dimensional energy band
given by E(k) = — y2 COS
ka in a Brillouin Zone, —n/a
< k < n/a. At time t = 0, with
the electron having wave
number k = 0, apply an
electric field é.

Obtain the energy, the speed,
and the position of the
electron as a function of time.
The  behavior will be
oscillatory. It can be thought
of as acceleration of the
electron followed by gradual
diffraction caused by the
lattice.

How many lattice distances
(each distance a = 2 A) does
the electron go if v2 =2 eV
and the field is 100 volts per
centimeter?




PROBLEM 1-1 Elementary
quantum mechanics

An electron in a hydrogen
atom has a potential energy,
— e2/V. The wave function
for the lowest energy state is
\j/(r) = Ae~rla°®

where a0 is the Bohr radius,
a0 = h2/me2, and A is a real
constant.

(@) Obtain A such that the
wave function is normalized,
@eréep=1

(b) Obtain the expectation
value of the potential energy,
(é\ Vill/).

(c) Calculation
expectation value
Kinetic energy,
K.EEANVIMNX

is trickier because of the
infinite curvature at /» = 0. By
partial integration in Eq. (1-
3), an equivalent form is
obtained:

the
the

of
of

Evaluate this expression to
obtain K.E.

(d Verify that the
expectation value of the total
energy, <|//| viiil} + K.E. is a
minimum with respect to
variation of 00. Thus a
variational solution of the




form e~',r would have given
the correct wave function.

(e)  Verify that this i//(r) is
a solution of Eq. (1-5).

PROBLEM
orbitals

1-2  Atomic

The hydrogen 2s and 2p
orbitals can be written
and

(see Schiff, 1968, p. 94), and
p orbitals can also be written
with X replaced by V and by
z. All four hydrogen orbitals
have the same energy, —
e2/(8flc).

Approximate the Litium 2,5
and 2p orbitals by the same
functions and approximate
the Litium potential by —
e2/r + ucore(r), where

Calculate the expectation
value of the energy of the 2s
and 2p orbitals. The easiest
way may be to calculate
corrections to the — e2/(8a0)
value.

This gives the correct
qualitative picture of the
Litium valence states but is
quantitatively inaccurate.




Good quantitative results can
be obtained by using forms
such as are shown above and
varying the parameters in the
exponents. Such variational
forms are called “ Slater
orbitals.”

For c2, obtain the O states for
the  homopolar  diatomic
molecule (see Fig. 1-11), by
using the matrix elements
from the Solid State Table, at
the back of the book, or from
Tables 2-1 and 2-2, in
Chapter 2. Writing

nd «4 = u3.

Confirm the values of these
energies as given in Table 1-1
for c2.




The lowest state contains
comparable contributions
from the s and p orbitals.
What is the fraction of s
character, that is, (ui + uiyiui
+ui+ui+ul)l

CHAPTER 2
Electronic Structure of Solids

SUMMARY

In solids, atomic valence
levels broaden into bands
comprising as many states as
there are atoms in the solid.

Electrons in these band states
are  mobile, each electron
state being characterized by a
momentum p or wave number
k = p/tt that is restricted to a
Brillouin Zone.

If each atom in the solid has
only four neighboring atoms,
the atomic valence orbitals
can be combined to form
bond orbitals between each
set of neighbors, and two
electrons per bond can
stabilize such an arrangement
of atoms.

In such covalent structures,
bands of states based upon
the bond orbitals will be fully
occupied by electrons but




other bands will be empty.
The bonds may be symmetric
or polar. The covalent
structure will not be stable if
there are not two electrons
per bond, if the bond energy
Is too small, or if the bond is
too polar.

Under these circumstances
the lattice will tend to
collapse to a denser structure.
It may be an ionic crystal,
which is a particularly stable
arrangement, if by
redistributing the electrons it
can leave every atomic shell
full or empty. Otherwise it
will be metallic, having bands
of states that are only
partially occupied.

If the electron states are
represented by linear
combinations  of  atomic
orbitals, the electron energy
bands are found to depend on
a set of orbital energies and
interatomic matrix elements.
Fitting these to accurate
bands suggests that atomic
term values suffice for the
orbital energies and that
nearest-neighbor interatomic
matrix elements scale with
bond- length d from system to
system as d~2.




This form, and approximate
coefficients, all follow from
the observation that the bands
are also approximately given
by a free-electron
approximation. Atomic term
values and  coefficients
determining interatomic
matrix elements are listed in
the Solid State Table and will
be used in the study of
covalent and ionic solids.

In this chapter we give a very
brief description of solids,
which is the principal subject
of the book. The main goal is
to fit solids into the context of
atoms and molecules. In
addition, we shall carefully
formulate the energy band in
the simplest possible case and

study the behavior of
electrons in energy bands.

2- A Energy Bands

When many atoms are

brought together to form a
solid, the number of electron
states is conserved, just as in
the formation of diatomic
molecules. Likewise, as in
diatomic molecules, the one-
electron states for the solid




can, to a reasonable
approximation, be written as
LCAOQO’s.

However, in solids, the
number of basis states is
great. A solid cube one
centimeter on an edge may
contain 1023 atoms, and for
each, there is an atomic s
orbital and three p orbitals. At
first glance it might seem that
such a problem, involving
some 4 X 1023 equations,
could not be attacked.

However, the simplicity of
the crystalline solid system

allows us to proceed
effectively and accurately. As
the atoms are brought

together, the atomic energy
levels split into bands, which
are analogous to the states
illustrated  for  diatomic
molecules in Fig. 1-12.

The difference is that rather
than splitting into a single
bonding and a single
antibonding state, the atomic
levels split into an entire band
of states distributed between
extreme bonding and
antibonding limits.

To see how this occurs, let us




consider the simplest
interesting case, that of
cesium chloride. The
structure of CsCl is shown in
Fig. 2-l,a. The chlorine
atoms, represented by open
circles, appear on the comers
of a cube, and this cubic array
Is repeated throughout the
entire crystal. At the center of
each cube is a cesium atom
(at the body-center position

il the cube).

Cesium chloride is very polar,
so the occupied orbitals lie
almost entirely upon the
chlorine atoms. As a first
approximation we can say
that the cesium atom has
given up a valence electron to

(a) Crystal structure
Brillouin Zone

(b)

FIGURE 2-1

(@) A unit cube of the cesium
chloride crystal structure, and
(b) the corresponding
Brillouin  Zone in wave
number space.

fill the shell of the chlorine
atom, which becomes a
charged atom, called an ion.
Thus we take chlorine 3s
orbitals and 3p orbitals as the
basis states for describing the




occupied states.

Furthermore, the chlorine
lons are spaced far enough
apart that the s and p states
can be considered separately,
as was true at large inter-
nuclear distance d in Fig. 1-
12. Let us consider first the
electron states in the crystal
that are based upon the
chlorine atomic 3s orbitals.

We define an index i that
numbers all of the chlorine
jons in the crystal. The
chlorine atomic s state for
each ion is written 1 Si). We
can approximate a crystalline
state by

The wvariational calculation
then leads immediately to a
set of equations, in analogy to
Eq. (1-26):

It is convenient at this stage
to avoid the complications
that arise from consideration
of the crystalline surface, by
introducing periodic
boundary conditions. Imagine
a crystal of chlorine ions that
iIs Ni ions long in the x-




direction, N2 long ill the "-
direction, and N3 long in the
z-direction. The right surface
of the crystal is connected to
the left, the top to the bottom,
and the front to the back. This
Is difficult to imagine in three
dimensions, but in one
dimension such a structure
corresponds to a ring of ions
rather than a straight segment
with two ends. Closing the
ring adds an Hij matrix
element coupling the states
on the end ions. Periodic
boundary conditions greatly
simplify the problem
mathematically; the only
error that is introduced is the
neglect of the effect of
surfaces, which is beyond the
scope of the discussion here.

The approximate description
of the crystalline state, Eq. (2-
1), contains a basis set of Np
= N1N2 N3 states (for the Np
pairs of ions), and there are
Np solutions of Eq. (2-2).
These solutions can be
written down directly and
verified by substitution into
Eg. (2-2). To do this we
define a wave number that
will be associated with each
state:




(2-3)

where i, n2, and n3 are
integers such that —Ni/2
<nx< Ni/2, .and X, vy, and
....are units vectors in the
three perpendicular
directions, as indicated in Fig.
2-1,b. Then for each Kk
allowed by Eq. (2-3), we can
write the coefficient Uj in the
form

Here the r7- = (ml X + m2y +
m3 z )a are the positions of
the ions. We see immediately
that there are as many values
of k as there are chlorine
ions; these correspond to the
conservation of  chlorine
electron states. We also see
that the wave functions for
states of different k are
orthogonal to each other.
Values for k run almost
continuously over a cubic
region of wave number space,
— n/a < kx < n/a, — n/a <ky
< n/a, and — n/a < kz < %l/a.
This domain of k is called a
Brillouin Zone. (The shape of
the Brillouin Zone, here
cubic, depends wupon the
crystal structure.) For—a
macroscopic—erystal—the—Ni
are very large, and the change
in wave number for unit
change in «j is very tiny. Eq.
(2-4) is an exact solution of
Eq. (2-2); however, we will




show it for only the simplest
approximation, namely, for
the assumption that the |sf)
are sufficiently localized that
we can neglect the matrix
element Hji = |S() unless (1)
two states in question are the
same (/' = j) or (2) they are
from nearest-neighbor
chlorine ions. For these two
cases, the magnitudes of the
matrix elements are, in
analogy with the molecular
case,

In cesium chloride the main
contribution to v2 comes
from cesium ion states acting
as intermediaries in a form
that can be obtained from
perturbation theory. We need
not be further concerned here
with the origin of v2 . (We
shall discuss the ionic crystal
matrix elements in Chapter
14.) For a particular value of j
in Eq. (2-2), there are only
seven values of 1 that
contribute to the sum: i=j
numbered as 0, and the six
nearest-neighbor chlorine s
states. The solution (valid for
any i) is

This energy varies with the
wave number over the entire




Brillouin Zone of Fig. 2-l,b.
The results are customarily
displayed graphically along

certain  lines within that
Brillouin Zone.
For example, Fig. 2-2,a

shows a variation along the
lines rx and TK of Fig. 2-1,b.

The calculation of bands
based on p states proceeds in
much the same way. In
particular, if we make the
simplest possible
assumption—that each px
orbital is coupled by a matrix
element V'2 only to the px
orbitals on the nearest
neighbors in the x-direction
and to no other p orbitals, and
similarly for the py and pz
orbitals— then the calculation
can be separated for the three
types of states. (Otherwise it
would be necessary to solve
three simultaneous equations
together.) For the states based
upon the px orbitals,

For py orbitals and pz
orbitals, the second term is
2VV2 COS kya and 1V'2 COS
kza, respectively. The three
corresponding p bands are
also shown in Fig. 2-2,a. In
later discussions we shall see
that by the addition of matrix
elements between orbitals




that are more distant it is
possible to obtain as accurate
a description of the true bands
as we like; for the present,

crude approximations are
sufficient to illustrate the
method.

Can we construct other bands,
for other orbitals, such as the
cesium s orbital? It turns out
that states that are not
occupied in the ground state
of the crystal are frequently
not well described in the
simplest LCAO descriptions,
but an approximate
description can be made in
the same way.

How would the simple bands
change if we could somehow
slowly eliminate the strong
atomic potentials that give
rise to the atomic states upon
which the bands are based?
The answer is given in Fig. 2-
2,b. The gaps between bands
decrease, including the gap
between the cesium bands
(not shown in Fig. 2-2,a) and
the chlorine bands. The
lowest bands have a
recognizable similarity to
each other in these two
extreme limits. The limit
shown in Fig. 2-2,b is in fact
the limit as the electrons




become completely free; the
lowest band there is given by
the equation for free-electron
Kinetic  energy, E
ti2k2/2m.

The other bands in Fig. 2-2,b
are also free-electron bands
but are centered at different
wave numbers (e.g., as E =
h2(k — g)2/2m), in keeping
with the choice to represent
all states by wave numbers in
the Brillouin Zone. Such free-
electron descriptions will be
appropriate later when we
discuss metals; for cesium
chloride, these descriptions
are not so far from LCAO
descriptions as one might
have thought, and in fact the
similarity will provide us, in
Section 2-D, with
approximate  values  for
interatomic matrix elements
such as v2 and V'l.

Since there are as many states
in each band as there are
chlorine ions in the crystal,
the four bands of Fig. 2-2,a,
allowing both spins in each
spatial state, can
accommodate  the  seven
chlorine electrons and one
cesium electron. All states




will be filled. This is the
characteristic feature of an
insulator; the state of the
system cannot be changed
without exciting an electron
with several electron volts of
energy, thus transferring it to
one of the empty bands of

greater energy. For that
reason, light with frequency
less than the difference

between bands, divided by h,
cannot be absorbed, and the
crystal will be transparent.
Similarly, currents cannot be
induced by small applied
voltages. This absence of
electrical conductivity results
from the full bands, not from
any localization of the
electrons at atoms or in
bonds. It is important to
recognize that bands exist in
crystals and that the electrons
are in states of the crystal just
as, in the molecule 02,
electrons form bonding and
antibonding molecular states,
rather than atomic states at
the individual atoms.

If, on the other hand, the
bands of cesium chloride
were as in Fig. 2-2,b, the




eight electrons of each
chlorine-cesium atom pair
would fill the states only to
the energy Ep shown in the
figure; this is called the Fermi
energy. Each band would
only be partly filled, a feature
that, as we shall see, is
characteristic of a metal.

2- B Electron Dynamics
In circumstances where the
electron energy bands are
neither completely full nor
completely  empty, the
behavior of individual
electrons in the bands will be
of interest. This is not the
principal area of concern in
this text, but it is important to
understand electron dynamics
because this provides the link
between the band properties
and electronic properties of
solids.

Consider a Brillouin Zone,
such as that defined for CsCl,
and an energy band E(k),
defined within that zone.
Further, imagine a single
electron within that band. If
its wave function is an energy
eigenstate, the time-
dependent Schroedinger
equation, Eq. (1-17), tells us
that




The magnitude of the wave
function and therefore also
the probability density at any
point do not change with
time. To discuss electron
dynamics we must consider
linear combinations of energy
eigenstates  of  different
energy. The  convenient
choice is a wave packet. In
particular, we construct a
packet, using states with
wave numbers near kO and
parallel to it in the Brillouin
Zone:

Taking the form of \i)h from
Egs. (2-1) and (2-3), and
treating k - kO as small, a
little algebra shows that at t =
0, Eg. (2-8) corresponds to
the state il/ko modulated by a
gaussian peak centered at r =
0. Furthermore, writing £(K)
= E(k0) + (dE/dk) m (k - k0),
we may see that the center of
the gaussian moves with a
velocity

Thus it is natural to associate
this velocity with an electron
in the state ljjko. Indeed, the
relation is consistent with the
expectation value of the
current operator obtained for
that state.




We are also interested in the
effects of small applied
fields: imagine the electron
wave packet described above,
but now allow a weak, slowly
varying potential F(r) to be
present. The packet will work
against this potential at the
rate V < dv/dr. This energy
can only come from the band
energy of the electron,
through a change, with time,
of the central wave number

kO of the packet:

This is consistent with the
relation

This can, in fact, be
generalized to  magnetic

forces by replacing —dv/dx
by the Lorenz force, — e[—
¥<p + (v/ic) X H],

Egs. (2-9) and (2-11)
completely  describe  the
dynamics of electrons in
bands wherever it is possible
to think in terms of wave
packets; that is, whenever the
fields are slowly varying
relative to interatomic
spacings. Notice that if we
think of fik as the canonical
momentum, then the band
energy, written in terms of p
= hk, plus the potential
energy, F(r), play precisely
the role of the classical
Hamiltonian, since with these




definitions, Egs. (2-9) and (2-
11), are precisely Hamilton’s
equations. Thus, in terms of
the energy bands E(k), we
may proceed directly by
using kinetic theory to
examine the transport
properties of solids, without
thinking again of the
microscopic theory that led to
those bands. We may go even
further and use this classical
Hamiltonian to discuss a
wave function for the packet
itself, just as we constructed
wave functions for electrons
in Chapter 1. This enables us
to treat band electrons bound
to impurities in the solid with
methods similar to those used
to treat electrons bound to
free atoms; however,

it is imperative to keep in
mind that the approximations
are good only when the
resulting wave functions vary
slowly with position, and
therefore  their  usefulness
would be restricted to weakly
bound impurity states.

Let us note some qualitative
aspects of electron dynamics.
If the bands are narrow in
energy, electron velocities
will be small and electrons




will  behave like heavy
particles. These qualities are
observed in insulator valence
bands and in transition-metal
d bands.

In simple metals and
semiconductors the bands
tend to be broader and the
electrons are more mobile; in
metals the electrons typically
behave as free particles with
masses near the true electron
mass.

One question that might be
asked is: what happens when
an electron is accelerated into
the Brillouin Zone surface?
The answer is that it jumps
across the zone and appears
on the opposite face. It is not
difficult to see from Eq. (2-3)
that if, for example, m; is
changed by Ni
(corresponding to going from
a wave number on one zone
face to a wave number on the
opposite face) the phase
factors change by e2”'; the
states are therefore identical.
In general, equivalent states
are found on opposite zone
faces, and an electron
accelerated into one face will
appear at the opposite face
and continue to change its




wave number according to
Eg. (2-11).

2-C  Characteristic ~ Solid
Types

Before discussing in detail
the wvarious categories of
solids, it is helpful to survey
them in general terms. This is
conveniently done by
conceptually constructing the
semiconductor silicon from
free atoms. In the course of
this, it will become apparent
how the metallicity of a
semiconductor varies with
row number in the periodic
table. With the general model
as a basis we can also
construct compounds  of
increasing polarity, starting
with silicon or germanium
and moving outward in the
same row of the periodic
table. Metallicity and polarity
are the two principal trends
shown by compounds and
will provide a suitable
framework for the main body
of our discussions.

Imagine silicon atoms
arranged as in a diamond
crystal structure but widely
spaced. This structure will be
discussed in the next chapter;
a two-dimensional analogue




of it is shown in Fig. 2-3.

At large internuclear distance,
two electrons are on each
individual atom in s states
and two are in p states. As the
atoms are brought together,
the atomic states broaden into
bands, as we have indicated.
(There are complications,
unimportant here, if one goes
beyond a one-electron
picture.) The s bands are
completely full, whereas the p
bands can accommodate Six
electrons per atom and are
only one third full. This
partial filling of bands is
characteristic of a metal. As
the atoms are brought still
closer together, the
broadening bands finally
reach each other, as shown in
Fig. 2-3, and a new gap opens
up with four bands below and
four above. The bonding
bands below (called valence
bands) are completely full
and the antibonding bands
above (called con-duction
bands) are completely empty;
now the system is that of an
insulator or, when the gap is
small, of a semiconductor. In

Chapter 1, it was noted that a




crossing of bonding and
antibonding states does not
occur in the simple diatomic
molecules, but that it can in
larger molecules and in
solids, as shown here.

The qualitative change in
properties associated with
such crossing is one of the
most  important  concepts
necessary for an
understanding of chemical
bonding, yet

FIGURE 2-3

The formation of bands in a
homopolar tetrahedral
semiconductor as the atoms
are brought together.
Internuclear distance

decreases to the right.

it has not been widely
examined until  recently.
Particular attention has been
brought by Woodward and
Hoffmann (1971) in their
discussion  of  reactions
between molecules. In that
context, Woodward and
Hoffmann found that when
bonding and antibonding
states are equally occupied, as
in Be2, discussed earlier, no
bonding energy is gained and




the atoms repel each other.

Only when the atoms are
close enough that upper
bonding levels can surpass or
cross the energy of the lower
antibonding levels above can
bonding result. In some such
cases (not Be2) a stably
bonded system can Dbe
formed, but an energy barrier
must be overcome in order to
cause the atoms to bond.
Reactions in which energy
barriers must be overcome
are called “symmetry
forbidden reactions.” (See
Woodward and Hoffmann,
1971, p. IOff, for a discussion
of 2C2H4 -> C4H8.) The
barrier remains, in fact, when
there is no symmetry.

In silicon, illustrated in Fig.
2-3, the crossing occurs
because high symmetry is
assumed to exist in the atomic
arrangement. Because of this

symmetry, the matrix
elements of the Hamiltonian
are zero between wave

functions of states that are
dropping in energy and those
that are rising (ultimately to
cross each other). If, instead,
the silicon atoms were to




come

m4  Increasing interatomic
distance (d)

FIGURE 2-4

The variation of energy of
two levels which cross, as a
function of atomic spacing d,
In a symmetric situation, but
do not cross when there is not
sufficient symmetry.

together as a distorted lattice
with  no symmetry, the
corresponding matrix
elements of the Hamiltonian
would not be zero, and
decreasing and increasing
energy levels would not cross
(see Fig. 2-4).

In an arrangement of high
symmetry, a plotting of total
energy as a function of d may
show a cusp in the region
where electrons switch from
bonding to antibonding states;
a clear and abrupt qualitative
change in behavior coincides
with this cusp region.

In an unsymmetric
arrangement, change in total
energy as a function of d is
gradual but at small or at




large internuclear distances,
energies are indistinguishable
from those observed in
symmetric arrangements.

Thus, though the crossing is
artificial (and dependent on
path), the qualitative
difference, which we
associate  with  covalent
bottcling, is not. For this
reason, it is absolutely
essential to know on which
side of a diagram such as Fig.
2-3 or Fig. 2-4 a particular
system lies. For example, in
covalent silicon, bonding-
antibonding splitting is the
large term and the sp splitting
is the small one. That
statement explains why there
IS a gap between occupied
states and unoccupied states,
which makes covalent silicon
a semiconductor, and
knowing this guides us in
numerical  approximations.
Similarly, in metals, bonding-
antibonding splitting is the
small term and the sp splitting
the large term; this explains
why it is a metal and guides
our numerical approximations
in metals.

If we wished to make full,
accurate machine calculations
we would never need to make
this distinction; we could
simply look at the results of
the full calculation to check




for the presence of an energy
gap.

Instead, our methods are
designed to result in intuitive
understanding and
approximate calculations of
properties, which will allow
us to guess trends without
calculations in some cases,
and which will allow us to
treat complicated compounds
that would otherwise be
intractable by full, accurate
calculation in other cases.

The diagram at the bottom of
Fig. 2-3 was drawn to
represent silicon but also,
surprisingly, illustrates the
homopolar series of
semiconductors c, Si, Ge, and
Sn. The internuclear distance
is smallest in diamond,
corresponding to the largest
gap, far to the right in the
figure.  The internuclear
distance  becomes larger
element by element down the
series,  corresponding to
progression leftward in the
figure to tin, for which the
gap is zero.

(Notice that in a plot of the
bands, as in Fig. 2-2, the gap




can vary with wave number.
In tin it vanishes at only one
wave number, as will be seen
in Chapter 6, in Fig. 6-10.)

Nonetheless we must regard
each of these
semiconductors—even tin—
as a covalent solid in which
the dominant energy is the
bonding-antibonding
splitting. We can define a
“metallicity” that increases
from c¢ to Sn, reflecting a
decreasing ratio of bonding-
antibonding splitting to sp
splitting; nevertheless, if the
structure is tetrahedral, the
bonding-antibonding splitting
has won the contest and the
system is covalent.

The discussion of Fig. 2-3 fits
well with the LCAO
description but the degree to
which a solid is covalent or
metallic is independent of
which basis states are used in
the calculation. Most of the
analysis of covalent solids
that will be made here will be
based upon linear
combinations of  atomic
orbitals, but we also wish to
understand them in terms of
free-electron-like  behavior.
(These two extreme




approaches are illustrated for
cesium chloride in Fig. 2-2.)

Free-electron-like behavior is
treated in Chapter 18, where
two physical parameters will
be designated, one of which
dominates in the covalent
solid and one of which
dominates in the metallic
solid. It can be useful here to
see how these parameters
correspond to the concepts
discussed so far.

In Fig. 2-2, the width of the
bands, approximately Ep —
Es, corresponds to the kinetic
energy, £F, of the highest
filled states. The bonding-
antibonding splitting
similarly corresponds to the
residual splitting between
bands which was suppressed
completely in Fig. 2-2,b. For
metals, this residual splitting
IS described by a
pseudopotential. In metals,
the small parameter is the
pseudopotential divided by
the Fermi energy
(corresponding to the ratio of
bonding-antibonding splitting
to sp splitting, or the
reciprocal of the metallicity).
In the covalent solids, on the
other hand, we would say that




the pseudopotential is the
dominant aspect of the
problem and the Kkinetic

energy can be treated as the
small correction. In fact, in

Chapter 18 the
pseudopotential approach will
be applied to simple
tetrahedral  solids;  there,

treating Kinetic energies as
small compared to the
pseudopotential leads to a
simple description of the
covalent bond in which a one-
to-one correspondence can be

obtained between matrix
elements of the
pseudopotential ~ (that s,

between plane waves) and
matrix elements of the
Hamiltonian between atomic
states. The correspondence
between these two opposite
approaches is even more
remarkable than the similarity
between the LCAO and free-
electron bands in Fig. 2-2,

though it is the latter
similarity which will provide
us with  LCAO matrix
elements.

Now, as an introduction to
polar semiconductors, let us
follow the variation of
electronic structure,
beginning with an elemental
semiconductor and moving to
more polar solids. For this,
germanium is a better starting




point than silicon, and in
order of increasing polarity
the series is Ge, GaAs, ZnSe,
and CuBr.

The total number of electrons
in each of these solids is the
same (they are isoelectronic)
and the structure is the same
for all; they differ in that the
nuclear charge increases on
one of the atoms (the anion)
and decreases on the other
(the cation). The qualita-

FIGURE 2-5

Change in the bands as a
homopolar semiconductor is
made increasingly polar, and
then as the two atom types
are made more alike without
broadening the levels.

tive variation in electronic
structure in this series is
illustrated in Fig. 2-5,a. Bear
in mind that even in nonpolar
solids there are two types of
atomic sites, one to the right
and one to the left of the
horizontal bonds in the figure.
In polar solids the nuclear
charge on the atom to the
right is increased, compound
by compound. This will tend
to displace the bond charges
(electron density) toward the
atom with higher nuclear




charge (center diagram in Fig.
2-5,a) and, in fact, the corre-
sponding transfer of charge in
most cases is even larger than
the change in nuclear charge,
so the atom with greater
nuclear charge should be
thought of as negative; hence,
the term anion is used to
denote the nonmetallic atom.
At high polarities most of the
electronic charge may be
thought of as residing on the
nonmetallic atom, as shown.

The most noticeable change
in the energy bands of Fig. 2-
5,b, as polarity increases, is
the opening up of a gap
between the valence bands as
shown. There is also a
widening of the gap between
valence and conduction bands
and some broadening of the
valence band. In extremely
polar solids, at the center of
the figure, the valence band,
to a first approximation, has
split into an anion s band and
three narrow anion p bands.
The conduction bands in this
model—the unoccupied
bands—also split into s bands
and p bands, but in a real
crystal of high polarity, the
bands for unoccupied orbitals
remain very broad and even




free-electron-like.

We can complete the
sequence of changes in the
model shown in Fig. 2-5 by
pulling the atoms apart to
obtain isolated free atom
energies. Perhaps the simplest
path is that shown on the
right side of Fig. 2-5, where
the metallic and nonmetallic
atoms become more alike and
where the individual energy
bands remain narrow. Where
the levels cross, electrons of
the anion fill available
orbitals of the cation; the
crossing results in a reduction
of the atomic charges to zero.

By comparing Fig. 2-5 with
Fig. 2-3, we can see that there
Is no discontinuous change in
the qualitative nature of the
electronic structure in going
from homopo- lar to highly
polar solids of the same
crystal structure (Fig. 2-5),
but that discontinuity is
encountered in going from
the atomic electronic
structure to the covalent one
(Fig. 2-3). Properties vary
smoothly with polarity over
the entire range. This feature




has been apparent for a long
time and led Pauling to define
lonicity in terms of energies
of formation in order to
provide a scale for the trend
(Pauling, 1960). Coulson et
al. (1962) redefined ionicity
in terms of an LCAO
description much like the one
we shall use in Chapter 3.

Phillips (1970) gave still a
third definition in terms of the
dielectric  constant.  The
formula for polarity of a
simple bond, introduced in
Eg. (1-37), is essentially
equivalent to the ionicity
defined by Coulson, but the
lonicities defined by Pauling
and by Phillips are to a first
approximation proportional to
the square of that polarity.
We will use the term polarity
to describe a variation in
electronic structure in
covalent solids, and the
particular values defined by
Eqg. (1-37) will directly enter

the calculation of some
properties. We do not use
polarity to interpolate

properties from one material
to another. However, such
interpolative approaches are
commonly used, and degree
of lonicity or polarity is
frequently used to rationalize




trends in properties.

Therefore it is best to
examine  that  approach
briefly. ~ The  distinction
between these two

approaches is subtle but of
fundamental importance.

We have seen that there are
trends with polarity and with
metallicity among the
tetrahedral solids. One of the
trends is the decrease, with
increasing metallicity and
increasing polarity, of the
angular rigidity that stabilizes
the open tetrahedral structure.
Thus, if either increases too
far, the structure collapses to
form a close- packed
structure. When this happens,
the new system has a
qualitatively different
electronic  structure, and
different concepts and
approximations become
appropriate.

We may think of this as
analogous to a phase diagram,
as illustrated in Fig. 2-6. If a
combination of atoms (e.g.,




Litium and flourine) is too
polar, a close-packed rocksalt
structure is formed. LiF is an

jonic crystal and most
frequently the best initial
approximation to the

electronic structure is based
on independent ions, which
we used in the discussion of
the cesium chloride energy
bands. lonic solids can be
distinguished from covalent
solids by their characteristic
crystalline structures, a topic
that will be taken up later.

When the metallicity is too

great, a close-packed
structure again becomes more
Polarity

FIGURE 2-6

A schematic phase diagram
indicating the three

qualitatively different types
of solids discussed in the
book. The phase boundaries
are topologically correct but
details of shape are only
schematic.

Stable. In this case the
electronic structure ordinarily
approximates that of a free-
electron gas and may be
analyzed  with  methods
appropriate to free-electron




gases.

Again, the crystal structure is
the determining feature for
the classification. When tin
has a tetrahedral structure it is
a covalent solid; when it has a
close- packed  white-tin
structure, it is a metal. Even
silicon and germanium, when
melted, become close-packed
and liquid metals.

[13

To complete the phase
diagram,” there must also be
a line separating metallic and
lonic systems. Materials near
this line are called
intermetallic compounds;
they can lie on the metallic
side (an example is Mg2Pb)
or on the ionic side (for
example, CsAu).
Consideration of intermetallic
compounds takes the trends
far beyond the isoelectronic
series that we have been
discussing.

The sharp distinction between
lonic and covalent solids is
maintained in a
rearrangement of the periodic
table of elements made by
Pantelides and  Harrison
(1975). In this table, the alkali
metals and some of their
neighbors are transferred to
the right (see Fig. 2-7). The




elements of the carbon
column (column 4) and
compounds made  from

elements to either side of that
column (such as GaAs or
CdS) are covalent solids with
tetrahedral structures.
Compounds made  from
elements to either side of the
helium column of rare gases
(such as KC1 or CaO) are
ionic compounds with
characteristic ionic structures.
A few ionic and covalent
compounds do not fit this
correlation; notably, MgO,
AgF, AgCl, and AgBr are
jonic compounds, and MgS
and MgSe can occur in either
ionic or covalent structures.
(Notice that Mg is found both
in column 2 and column 10).
The interesting isoelectronic
series for ionic compounds
will be those such as A,
KC1, CaS, and ScP, obtained
from argon by transferring
protons between argon nuclei.
In this case the ion receiving
the proton is the metallic ion
and the electronic structure is
thought of as a slightly
distorted rare gas structure.
This model leads to a theory
of ionic-compound bonding
that is even simpler than the
bonding theory for covalent
solids. The Pantiledes-
Harrison rearrangement of the
periodic table is used as the




format for the Solid State
Table, where the parameters
needed for the calculation of
properties have been
gathered.

2- D Solid State Matrix
Elements

Almost all of the discussion
of covalent and ionic solids in
this book is based upon
descriptions of electron states
as linear combinations of
atomic orbitals. In order to
obtain numerical estimates of
properties we need numerical
values for the matrix
elements giving rise to the
covalent and polar energies
for the properties being
considered. There is no best
choice for these parameters
since a trade-off must be
made between simplicity (or
universality) of the choice
and  accuracy of the
predictions that result when
they are used.

Clearly if different values are
used for each property of
each material, exact values of
the  properties can be
accommodated. We shall
follow a procedure near the
opposite extreme, by




introducing four universal
parameters in terms of which
all interatomic matrix
elements between s and p
states for all systems can be
estimated.

We shall also use a single set
of atomic s and p orbital
energies throughout. These
are the principal parameters
needed for the entire range of
properties, though the
accuracy of the corresponding
predictions is limited.

One might at first think that
interatomic matrix elements
could be calculated by using

tabulated atomic wave
functions and  potentials
estimated for the various

solids. Such approaches have
a long history of giving poor
numerical results and have
tended to discredit the LCAO
method itself.

However, the difficulty seems
to be that though true atomic
orbitals do not provide a good
basis for describing electronic
structure, there are atomiclike
orbitals that can provide a
very good description. One




can therefore obtain a useful
theory by using LCAO
formalism but obtaining the
necessary matrix elements by
empirical or semiempirical
methods.

One of the oldest and most
familiar such approaches is
the  “Extended  Hueckel
Approximation”  (Hoffman,
1963.) Let us take a moment
to examine this approach,
though later we shall choose
an alternative scheme.
Detailed rationalizations of
the approach are given in
Blyholder and  Coulson
(1968), and in Gilbert (1970,
p. 244);

a crude intuitive derivation
will suffice for our purposes,
as follows. We seek matrix
elements of the Hamiltonian
between atomic orbitals on
adjacent atoms, (p\H\cc). If |
a) were an eigenstate of the
Hamiltonian, we  could
replace HI a) by Eala), where
£a is the eigenvalue. Then if
the overlap (,P\oc) is written
Spa, the matrix element
becomes EaSpa.




This, however, treats the two
orbitals differently, so we
might use the average instead
of Ea.

Finding that this does not
give good values, we
introduce a scale factor G, to
be adjusted to fit the
properties of heavy
molecules; this leads to the
extended Hueckel formula:
(.PiHiu) = GSpa(ep + ea)/2.

(2-12)

These matrix elements are
substituted into the
Hamiltonian matrix of Eq. (2-
2) for a molecule, or a cluster
of atoms, and the matrix is
diagonalized. A value of G =
1.75 is usually taken; the

difference from unity
presumably, arises from the
peculiar manner in which
nonorthogonality IS
incorporated.

The  Extended Hueckel

Approximation and a wide
range of methods that may be
considered as descendents of
it (e.g., the CNDO method—
Complete Neglect of
Differential Overlap) have
enjoyed considerable success




in  theoretical chemistry.
Some machine calculation is
required, first in determining
the parameters s from
tabulated wave functions or
numerical approximations to
them, and second in solving
the resulting simultaneous
equations, as at Eq. (2-2).
This difficulty is exacerbated
by the fact that s drops rather
slowly  with increasing
distance between atoms, so a
very large number of matrix
elements are required. The
computation required for any
given system is very small,
however, in comparison with
what is required to obtain
more  accurate  solutions.
Once an Extended Hueckel
Approximation has  been
made, direct machine
computations of any property
can be made and alternatives
to the simplest
approximations—e.g., Eq. (2-
12)— can be made which
improve agreement with the
experimental values. Such
Improvements are described
in detail by Pople and
Beveridge (1970). Combining
descriptions of electronic
structure that are essentially
correct, with the use of high-
speed computers, and the
results of a number of years
of trial and error in correcting
the simplest approximations,




probably provide the most
accurate predictions of the
diverse properties of complex
systems that are presently
available. For isolated
properties, such as the energy
bands of solids, other
computer methods are much
more reliable and accurate.

The approach that will be
used in this text is different,
in that the description of
electronic structures is greatly
simplified to provide a more
vivid understanding of the
properties; numerical
estimates of properties will be
obtained with calculations
that can be carried through by
hand rather than machine. We

shall concentrate on the
“physics” of the problem.

In this context a
semiempirical determination
of matrix elements s

appropriate. The first attempt
at this (Harrison, 1973c)
followed Phillips (1970) in
obtaining the principal matrix
element v2 from the
measured dielectric constant.
A second attempt (Harrison
and Ciraci,1974) used the




principal peak in the optical
reflectivity of the covalent
solids, which we shall come
to later, as the basis for the
principal matrix element;

this led to the remarkable
finding that v2 scaled from
material to material quite
accurately as the inverse
square of the interatomic
distance, the bond length d,
between atoms. A subsequent
study of the detailed form of
valence bands (Pantelides and
Harrison, 1975), combined
with v2 determined from the
peak in optical reflectivity,
gave a complete set of
interatomic matrix elements
for covalent solids with the
finding that all of them varied
approximately as d~2 from
material to material.

The reason  for  this
dependence recently became
very clear in a study of the
bands of covalent solids by
Froyen and Harrison (1979).
They took advantage of the
similarity of the LCAO bands
and  free-electron  bands,
noted in Fig. 2-2. By equating




selected energy differences
obtained in the two limits,
they derived formulae that
had this dependence for all of
the interatomic matrix
elements. We may in fact see
in detail how this occurs by
considering Fig. 2-2. The
lowest band, labelled s in Fig.
2-2,a, was given by Eq. (2-5).

For k in an x-direction, it
becomes E(k) = es — 4V2 —
2V2 cos ka, varying by 4VZ
from r (where k = 0) to X
(where k = %/a). The free-
electron energy in Fig. 2-2,b
varies by (h2/2m)(n/a)2 over
the same region of wave
number space for the lowest
band. Thus, if both limiting
models are to be appropriate,
and therefore consistent with
each other, it must follow that
v2 = t]h2/{ma2) with rj =
7t2/8 = 1.23.

This predicts the dependence
upon the inverse square of
interatomic distance and a
coefficient that depends only
upon crystal structure. A
similar comparison of the
second band gives the same
form with a different
coefficient for the matrix
element v'2 between p states.




This simplest model is not so
relevant, but it illustrates the
point nicely.

Before going to more relevant
systems we must define more
precisely the notation to be
used for general interatomic
matrix elements.

These matrix elements will be
important throughout the text;
they are specified here
following the conventions
used by Slater and Koster
(1954) and used earlier while

discussing  the  diatomic
molecule. In general, for a
matrix  element  <al|//|/j>

between orbitals on different
atoms we construct the vector
d, from the nucleus of the
atom of which | a) is an
orbital (the “ left ” atom) to
that of the atom of which 1/?)
is an orbital (the “right”
atom). Then spherical
coordinate  systems  are
constructed with the z-axes
parallel to d, and with origins
at each atom; the angular
form of the orbitals can be
taken as Y?(9, ¢) for the left
orbital and V1! (O', Q) for the
right orbital. The angular
factors depending upon ¢




combine to (Notice that the
wave function (a | is the
complex conjugate of | a).)
The integration over a gives
zero unless m' = m. Then all
matrix  elements  (a|H||S)
vanish unless rri = m, and
these are labelled by O, n, or
O (in analogy with s, p, d) for
m —1). 1, and 2 respectively.
Thus, for example, the matrix
element Vspa corresponds to
1=0,1=1, m=0. Slater and

Koster (1954) designated
matrix elements by enclosing
the indices within

parentheses; thus, the element
VWm used in this book and
their (Wm) are the same.

We saw how formulae for the
matrix elements can be
obtained by equating band
energies from LCAO theory
and from free-electron theory
in Fig. 2-2. Froye.l and
Harrison (1979) made the
corresponding treatment of
the tetrahedral solids, again
including only matrix
elements between nearest-
neighbor atoms. The form of
their results is just as found
for the simple cubic case




Notice that the subscript m is
a quantum number but the m
in the denominator
Dimensionless coefficients in
Eq. (2-13)  determining
approximate interatomic
matrix elements.

Theoretical values

Coefficient Simple cubic
structure  Tetrahedral
structure  Adjusted value*

NOTE: Theoretical values
(Froyen and Harrison, 1979)
were obtained by equating
band energies from 1 (\0 and
free-eiectron  theory, as
described in the text.
Adjusted values (Harrison,
1976b, 1977a) were obtained
by fitting the energy bands of
silicon and germanium; the
adjusted values appear in the
Solid State Table.

Is the electron mass. The
length d is the internuclear
distance, equal to a in the
simple cubic structure. If d is
given in angstroms, this form
Is easily evaluated, using
h2/m = 7.62 eV-A2. In Table
2-1 we give the values of the
dimensionless  cnefficients
obtained by Froyen and




Harrison for both the simple

cubic and Id rahedral
structures.
The calculation is closely

related to that just carried
through for the bands of Fig.
2-2, and in fact, the VSS<J
matrix element for the simple
cubic case is just the negative
of the v2 value evaluated
there, leading to the t]ssa =
— 7t2/8. wv shall see in
Section 18-A exactly how the
other theoretical coefficients
listed were obtained.

Motice that the coefficients
obtained for the tetrahedral
structure differ from those
obtained for the simple cubic
structure and indeed the
coefficients for any one
structure depend somewhat
upon which band energies are
used. However, the
differences are not great and
we shall neglect them. The
coefficients we shall use are
close to those given by
Froyen and Harrison (1979)
for the tetrahedral structure,
but were obtained somewhat
earlier by Harrison (1976b),
who adjusted tliL'm to give
the interatomic matrix




elements found by Chadi and
Cohen (1975) in fitting the
known energy bands of
silicon and germanium. The
average of the coefficients so
obtained for silicon and
germanium is listed in Table
2-1 in the column headed
“Adjusted,” and these are the
values listed in the Solid State
Table and used throughout
this text. Also listed in the
Solid State Table are forms
lor predicting matrix elements
involving atomic d states,
formulae  which will be
developed in Chapter 20.

The coefficients in Table 2-1
have been obtained entirely in
the context of nearest-
neighbor coupling between
states. They would have been
different if a

*For recent developments,
see the Preface to the Dover
Edition.

TABLE 2-2

Atomic term values from
Herman and Skillman (196.1).
or extrapolated from their
values.




Atomic term value (eV)
second-neighbor LCAO fit
had been used, for example,
and it would not therefore be
appropriate to use them if the
description of the bands were
to be extended to second-
neighbor interactions.

It will ordinarily be more
convenient in solids to use the
forms for angular
dependence, x/r, y/r, and z/r,
as in Eq. (1-20), rather than
the forms Y’1(0, <p). Then in
order to obtain  matrix
elements involving these
orbitals, we need to expand
the

NOTE: These values appear
also in the Solid State Table.

p orbital in question in terms
of 17, which are defined with
respect to the coordinate
system discussed above. For
p orbitals this is quite simple.
For the simplest geometries it
leads to the identification of
matrix elements shown in the
upper four diagrams of Fig.
2-8. For arbitrary geometries
the result depends upon the
direction cosines giving the
vector d in the coordinate
system of X, y, and z; this is
illustrated at the bottom in




Fig. 2-8. The corresponding
transformations for d

FIGURE 2-8

The four types of interatomic
matrix elements entering the
study of s- and p-bonded
systems are chosen as for
diatomic molecules as shown
in Fig. 1-11. Approximate
values for each are obtained
from the bond length, or
internuclear distance, i/, by
V) — riijtS/md2, with tiij
taking values given in Table
2-1 and in the Solid State
Table at the back of the book.
When p orbitals are not
oriented simply as shown ill
the upper diagrams, they may
be decomposed geometrically
as vectors in order to evaluate
matrix elements as illustrated
in the bottom diagrams.

It can be seen that the
Interatomic matrix element at
the bottom right consists of
cancelling the contributions
that lead to a vanishing
matrix element.

orbitals as well as p orbitals
will be given in detail in
Table 20-1, but for s and p




orbitals the simple vector
transformations illustrated in
Fig. 2-8 should be sufficient;
the results can be checked
with Table 20-1.

of the

estimate
difference Ep — £s. It is of
the correct general magnitude
but fails to describe the
important trend in the energy
bands among the covalent

energy

solids ¢, Si, Ge, and Sn.
Furthermore, it does not
provide a means of estimating
term-value differences such
as scp — e in polar solids.

Thus, for these intra-atomic
parameters we shall use
calculated atomic  term
values, which are listed in
Table 2-2. A comparison
shows them to be roughly
consistent with term values
obtained in the fit to known
bands done by Chadi and
Cohen (1975) for the polar
semiconductors as well as for
silicon and germanium.




This  particular set  of
calculated values (by Herman
and Skillman, 1963) was
chosen since the
approximations used in the
calculation were very similar
to those used in determining
the energy bands that led to
the parameters in Table 2-1.
The values would not have
differed greatly if they were
taken from  Hartree-Fock
calculations (such values are
tabulated in Appendix A).

Values based on Hartree-
Fock calculations have the
advantage of giving good
values for d states. Therefore,
though the calculations in this
book are based upon the
Herman-Skillman values, for
some applications the
Hartree-Fock values may be
better suited.

Notice that as absolute
numbers the atomic energy
values have only limited
meaning in any  case.
Imagine, for example, that the
value Ep for oxygen correctly
gives the energy required to
remove an electron from an
isolated oxygen atom in
space. If this atom is brought
close to the surface of a metal




(or, almost equivalently, to
the surface of a covalent solid

with a large dielectric
constant) but not close
enough for any chemical

bonding to take place, how
much energy is now required
to remove the electron from
the oxygen? One way to
calculate this is to move the
neutral atom to infinity, with
no work required, remove the
electron requiring £p, and
then return the oxygen ion to
its initial position; as it
returns it gains an energy
e2/4d from the image field,
where d is the final distance
from the surface. The
resultant correction of fip,
with d equal to 2 A, is 1.8 eV,
far from negligible. The
precise value is uncertain
because of the dielectric
approximation, the
uncertainty in the d used, and
other effects, but we may
expect that significant
corrections of the absolute
energies are needed relative
to the values in vacuum,

The reason that the values are
nevertheless useful as
parameters is that in solids
such corrections are similar
for all atoms involved and the




relative values

meaningful.

are

How do the values obtained
from Tables 2-1 and 2-2
compare with the values
obtained directly by fitting
energy bands? This
comparison is made in Table
2-3 for the covalent systems
studied by Chadi and Cohen.
Agreement Is semiquantita-
tive throughout and all trends
are reproduced except the
splitting of values for VsptT
in the compounds. The
discrepancies are comparable
to the differences between
different fits (the most recent
fits are wused here), thus
justifying the wuse of the
simple forms in our studies.
Significantly different values
are obtained if one includes a
greater number of matrix
elements in the fit (Pandey,
1976)

and would be appropriate if
we were to include these
matrix elements in the
calculation of properties other
than the bands themselves.




Significantly different values
have also been given by
Levin (1974).

The coefficients from Table
2-1 and atomic term values
from Table 2-2 will suffice
for  calculation of an
extraordinarily wide range of
properties of covalent and
jonic solids using only a
standard hand-held calculator.
This is impressive testimony
to the simplicity of the
electronic  structure  and
bonding in these systems.
Indeed the same parameters
gave a  semiquantitative
prediction of the one-electron
energy levels of diatomic
molecules in Table 1-1.
However, that theory is
intrinsically approximate and
not always subject to
successive correc-

TABLE 2-3

Matrix elements from the
Solid State Table, compared
with values (in parentheses)
from fits to individual bands.
All values are in eV.

SOURCES of data in
parentheses: ¢ from Chadi
and Martin (1976); Si and Ge
from Chadi and Cohen
(1975); GaAs and ZnSe from




Chadi and Martin (1976).

NOTE: Where two values of

Vspr are given for
compounds, the first vaiue is
for an s state in the

nonmetallic atom and p state
in the metallic atom.

States are reversed for the
second value. Where two
values of («p — cs)/4 are
listed, the first value is for the
metallic atom, the second for
the nonmetallic atom.

tions and improvements. In
most cases our predictions of
properties will be accurate on
a scale reflected in Table 2-3,
and though the introduction
of further parameters allows a
more accurate fit to the data,
it may be that improvements
at a more fundamental level
are required for a more
realistic treatment and that
these improvements cannot
be made without sacrificing
the conceptual and
computational simplicity of
the picture that will be
constructed in the course of
this book.

Before proceeding to
quantitative studies of the




covalent  solids it is
appropriate to comment on
the concept of
“electronegativity,”

introduced by Pauling to
denote the tendency of atoms

to attract electrons to
themselves (discussed
recently, for example, by

Phillips, 1973Db, p. 32). It may
be an unfortunate term since
the positive terminal of a

battery has greater
electronegativity than the
negative terminal.

Furthermore, it was defined
to be dimensionless rather
than to have more natural
values in electron volts. It
would be tempting to take the
hybrid energy values of Table
2-2 as the definition of
electronegativity, but it will
be seen that in some
properties the energy Ep is a
more appropriate measure.
Therefore it will be a wiser
choice to use the term only
qualitatively.  Then  from
Table 2-2 (or from Fig. 1-8)
we see that the principal trend

IS an increase in
electronegativity with
Increasing atomic  number

proceeding horizontally from
one inert gas to the next (e.g.,
from neon, Na, Mg, Al, Si, p,
s, and Cl to argon). In
addition, the elements
between helium and neon




have greater electronegativity
than the heavier elements. It
iIs useful to retain
electronegativity ” to describe
these two qualitative trends.

2-E Calculation of Spectra

We have seen that in solids,
bands of electron energies
exist rather than the discrete
levels of atoms or molecules.
Similarly there are bands of
vibration frequencies rather
than discrete modes. Thus, to
show electron eigenvalues, a
curve was given in Fig. 2-2
rather than a table of values.

However, a complete
specification of the energies
within the bands for a three-
dimensional solid requires a
three-dimensional plot and
that cannot be made; even in
two dimensions an attempt is
of limited use. Instead, a
convenient representation of
electronic structure can be
made by plotting the number
of states, per unit energy, as a
function of energy. This loses
the information about, for
example, electron velocity,
since that requires a
knowledge of energy as a
function of wave number.




However, it is all that is
needed to sum the energies of
the electrons for given atomic
arrangements.

Calculation of such a
spectrum might seem
straightforward, but if done
by sampling, it requires an
inordinate amount of
calculation. For example, to
produce a plot we might
divide the energy region of
interest into one thousand
intervals and then evaluate
the energies (as we did in
Section 2-A) over a closely
spaced grid in the Brillouin
Zone, keeping track of the
number  of  eigenvalues
obtained in each interval. A
great increase in efficiency
can be obtained by noting that
the energy bands have the full
symmetry of the Brillouin
Zone—in the case of CsCl, a
cube—so that the entire
Brillouin Zone need not be
sampled. One could sample
one half the zone and
multiply the results by two,
one eighth and multiply by
eight, or in fact, for a cube,
one forty-eighth  suffices.
However, even in a sample of
thousands of values, the




resulting histogram shows
large statistical fluctuations.
Therefore an  alternative
approach is required.

The approach most
commonly used, and used
extensively in the curves in
this book, is the Gilat-
Raubenheimer scheme
(Raubenheimer and Gilat,
1966). In this scheme, the
idea is to replace the true
bands by approximate bands,
but then to calculate the
density of levels for that
spectrum accurately. This is
done by dividing up the
Brillouin Zone, or a forty-
eighth of the zone for cubic
symmetry, into cells; of the
order of fifty may be
appropriate;  Raubenheimer
and Gilat used cells in the
shape of cubes. They then fit
each band in each cell by a
linear expression, Ek = EO +
Al kx + A2ky + A3kz, with k
measured from the center of
the cell.

Then the energy region of
interest for the system is
divided into some 1000
energy intervals and the
contribution to each of these
intervals is accurately and




analytically obtained from the
linear values of the bands in
each cell. This is illustrated
for one dimension in Fig. 2-9.
We see that the distribution of
the approximate bands is
obtained exactly. This turns
out to eliminate most of the
statistical error and to give
very good results.

In the Gilat-Raubenheimer
scheme it is inconvenient to
obtain the necessary values of
the gradient of the energy
with respect to wave number
in each cell, and the cubes do
not fit the Brillouin Zone
section exactly, so there are
problems in calculating the
energy at the surface of the
section. For this reason
Jepsen and Andersen (1971)
and later, independently,
Lehman and Taut (1972)
replaced

(¢)  Number of states
contributed in each interval

FIGURE 2-9

A schematic representation of
the Gilat-Raubenheimer
scheme  for  calculating
densities of states. The energy




bands (a) are replaced by
linear bands (b) in each cell.
The contribution by each cell
to each of a set of small
energy intervals (c) is then
obtained analytically.

cubes by tetrahedra and wrote
the distribution of energies in
terms of the values at the four
comers. A clear description of
this much simpler approach is
given by Rath and Freeman
(1975), who include the
necessary formulae. It is also
helpful to see one manner in
which the Brillouin Zone can
be divided into cells. This is
shown in Fig. 2-10, This
procedure has been discussed
also by Gilat and Bharatiya
(1975).  Another  scheme,
utilizing a more accurate
approximation to the bands,
has been considered recently
by Chen (1976).

In some sense this is a
computational detail, but the
resulting curves are so
essential to solid state
properties that the detail is
important. Once a program
has been written for a given
Brillouin Zone, any of the
spectra for the corresponding
structure can be -efficiently
and accurately obtained from
the bands themselves.




PROBLEM 2-1 Calculating
one-dimensional energy
bands

Let us make an elementary
calculation of energy bands,

- For many readers the

procedure will be familiar.
Consider a ring of N atoms,
each with an s orbital. We
seek an electronic state in the
form of an LCAO,

where the integers a number
the atoms. We can evaluate
the expectation value of the
energy, considering all atoms
to be identical, so (a | HI a) =
R is the same for all a. We
can also neglect all matrix
elements (a\H\p"), except if a
and /? differ by one; we write
that

FIGURE 2-10

(@ The body-centered-
cubic  Brillouin  Zone s
divided into 48 equivalent
pyramidal segments. (Two
such pyramids are required
for  face-centered  cubic
zones.) (b) The pyramid is cut




by equally spaced planes
parallel to the base, (c) Most
of the slab may be subdivided
Into triangular prisms. An
edge is left over on the right
which can be divided into
triangular prisms with one
tetrahedron left over. Each
triangular prism (d) may
finally be divided into three
tetrahedra, (e). This divides
the Brillouin Zone entirely
into tetrahedra of equal
volume. The bands are taken
to be linear in wave number
within each tetrahedron.

We shall treat the uj as
independent of ua and
minimize the expression with
respect to U, giving a linear
algebraic equation for each a.

(@ Show that for any
integer it there is a solution
for all of these equations of
the form

(b) Give the energy as a
function of n, and sketch it as
a function of n/N for large N.
Include positive and negative
n.

(c) Obtain the value of A
that normalizes the electron
state.




(d Show that for an n
outside the range — N/2 <n<
N/2, the electron state
obtained is identical to that
for some n within this range
(within the Brillouin Zone). It
suffices to prove that for
given n the ua are unchanged
by the addition of N to n.

PROBLEM
dynamics
Consider an electron in a one-
dimensional energy band
given by E(k) = — y2 COS
ka in a Brillouin Zone, —n/a
< k < n/a. At time t = 0, with
the electron having wave
number k = 0, apply an
electric field é.

2-2  Electron

Obtain the energy, the speed,
and the position of the
electron as a function of time.
The  behavior  will be
oscillatory. It can be thought
of as acceleration of the
electron followed by gradual
diffraction caused by the
lattice.

How many lattice distances
(each distance a = 2 A) does
the electron go if v2 =2 eV
and the field is 100 volts per
centimeter?









