Theo yéu cu ciia khich hing, trong mt nim
qua, ching t61i 48 dijch qua 16 mén hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chua tinh cic
tai liéu tir nim 2010 tr& vé& truéc) Xem & ddy

DICH VU "Cpisau mot lan lién lac, viée

DICH S it
TIENG

ANH |
CHUYRN Gia ca: co thé giam dén 10

NGANH nhin/l tran
NHANH

NHAT VA Chat luc_mg:Tgo dung niém tin cho
khach hang bang céng nghé 1.Ban

XAC théy duoc to.:ém b6 ban dich; 2.Ba,n

NHAT danh gia chat lwong. 3.Ban quyét
dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

VA A2 L E T A (W 11|

Tim ban géc tai thw muc nay (copy link va dan hodc nhan Ctrl+Click):

https://drive.google.com/folderview?id=0B4rAPqlxlMRDSFE2RX0Q2N3FtdDA&usp=sharing

Lién hé dé mua:

thanhlam1910 2006@yahoo.com hoic frbwrthes@gmail.com hoic s6 0168 8557 403 (gap Lam)

Gi4 tién: 1 nghin /trang don (trang khéng chia cdt); 500 VND/trang song ngir

Dich tai li¢u ciaa ban: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

https://drive.google.com/folderview?id=0B4rAPqlxIMRDSFE2RXQ2N3FtdDA&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

Computational Geometry
Algorithms and Applications
Third Edition

1.Computational
Introduction

Imagine you are walking on
the campus of a university
and suddenly you realize you
have to make an urgent phone
call. There are many public
phones on campus and of
course you want to go to the
nearest one. But which one is
the nearest? It would be
helpful to have a map on
which you could look up the
nearest public phone,
wherever on campus you are.
The map should show a
subdivision of the campus
into regions, and for each
region indicate the nearest
public phone. What would
these regions look like? And
how could we compute them?

Geometry

Even though this is not such a
terribly important issue, it
describes the basics of a
fundamental geometric
concept, which plays a role in
many applications. The
subdivision of the campus is a
so-called Voronoi diagram,
and it will be studied in
Chapter 7 in this book. It can
be used to model trading
areas of different cities, to

Hinh hoc tinh toan

Cac thuat toan va trng dung Tai ban
1an 111

1.Nhap mon hinh hoc tinh toan

Hay tudng tuong ban dang di bd
trong khuén vién truong dai hoc va
bong nhién ban thiy can phai thuc
hién mdt cudc goi khan cép. Co
nhiém tram dién thoai cong coOng
trong khudén vién truong va tat
nhién ban mubn dén tram nao gﬁn
nhat. Nhung tram ndo gin nhét
day? Vi vay, sé rat hitu ich néu ban
c6 mot ban do dé tim tram dién
thoai cong cong gan nhat khi ban di
trong khudn vién trudng. Ban d6 sé
biéu dién cac khu vuc trong khuon
vién, va tram dién thoai cong cOng
gin nhat trong mdi khu vuc do.
Nhitng khu vuc nay c6 dang nhu
thé nao? Va lam sao nguoi ta cod
thé tinh toan duoc ching?

Mic du day khong phai 13 mot van
dé qua quan trong, nhung né gitp
chung ta hinh dung dugc mdt khai
niém co ban cua hinh hoc, mot khai
niém dong vai trd quan trong trong
nhiéu tng dung. Viéc chia nho
khuon vién duoc goi la so dd
Voronoi, va ching ta sé nghién ctru
khai niém do trong chuong 7 cua
sach nay. No c6 thé duoc st dung

guide robots, and even to
describe and simulate the

growth of crystals.
Computing a geometric
structure like a Voronoi

diagram requires geometric
algorithms. Such algorithms
form the topic of this book.

A second example. Assume
you located the closest public
phone. With a campus map in
hand you will probably have
little problem in getting to the
phone along a reasonably
short path, without hitting
walls and other objects. But
programming a robot to
perform the same task is a lot
more difficult. Again, the
heart of the problem is
geometric: given a collection
of geometric obstacles, we

have to find a short
connection between two
points, avoiding collisions

with the obstacles. Solving
this so-called motion
planning problem is of crucial
Importance in robotics.
Chapters 13 and 15 deal with
geometric algorithms
required for motion planning.
A third example. Assume you
don’t have one map but two:
one with a description of the
various buildings, including
the public phones, and one

dé mo6 hinh hoéa cac khu vuc
thwong mai ciia thanh phd, dan
duong cho robot, va tham chi dé
mo td va md phong sy phat trién
ctia céc tinh thé. Tinh toan mot cau
trac hinh hoc nhu so d6 Voronoi
do1 hoi cac thuat toan hinh hoc.
Cac thuat toan nhu thé ciing 1a chi
dé cua sach nay.

Vi du thr hai. Gia sir ban da xac
dinh dugc tram di¢n thoai cong
cdng gan nhat. Khi c6 ban db trong
tay, ban c6 thé dé dang di dén tram
dién thoai d6 theo dudng ngan nhat
ma khong cham tudng hodc cac vat
can khac. Nhung 1ap trinh dé robot
thuc hién mot nhiém vu tuong tu
lai khé khan hon nhiéu. Mot lan
n{ra, trong tam cua van dé lai la
hinh hoc: cho mot tdp hop céc
chudng ngai vat hinh hoc, chung ta
phai tim dudng di ngin cho vat
giita hai diém, sao cho nd khong
cham phai cac chudng ngai vat.
bay duoc goi la bai toan hoach
dinh chuyén dong cuc ky quan
trong trong linh vuc robot hoc.
Chuong 13 va 15 s& dé cap dén cac
thuat toan hinh hoc can thiét dé
hoach dinh chuyén dong.

Vi du thtr ba. Gia st ban khong cé
mot ban d6 ma c6 hai: Mot ban d6
mé ta cac toa nha khac nhau, ké ca

indicating the roads on the
campus. To plan a motion to
the public phone we have to
overlay these maps, that is,
we have to combine the
information in the two maps.
Overlaying maps is one of the
basic operations of
geographic information
systems. It involves locating
the position of objects from
one map in the other,
computing the intersection of
various features, and so on.
Chapter 2 deals with this
problem.

These are just three examples
of geometric problems
requiring carefully de-signed
geometric algorithms for their
solution. In the 1970s the
field of computational
geometry emerged, dealing

with such geometric
problems. It can be defined as
the systematic study of

algorithms and data structures
for geometric objects, with a
focus on exact algorithms that
are asymptotically fast. Many
researchers were attracted by
the challenges posed by the
geometric problems. The road
from problem formulation to
efficient and elegant solutions
has often been long, with
many difficult and sub-
optimal intermediate results.
Today there is a rich

cac tram dién thoai cong cong, va
mot ban d6 chi dan dudng trong
khuon vién. Pé xac dinh duogc
duong dén tram dién thoai cong
cong, chiing ta phai chong xép hai
ban d6 ndy, c6 nghia 13, ching ta
phai két hop thong tin trong hai ban
d6. Chong xép ban d6 1a mot trong
nhirng thuat toan co ban cua céac h¢
thong thong tin dia 1y. NO lién quan
dén viéc dinh vi cac doi tuong tu
mot ban d6 trong ban do kia, tinh
toan su giao nhau cta cac thudc
tinh kh&c nhau, va v.v.... Chuong 2
s& dé cap dén van dé nay.

Pay chi 1a ba vi du vé cac van dé
hinh hoc doi hoéi cac thuat toan
hinh hoc dugc thiét ké can than dé
giai quyét chung. Vao nhitng nim
1970, linh vuc hinh hoc tinh toan
dd noi 1én, nghién ctru cac van dé
hinh hoc nhu thé. Chung ta ¢ thé
dinh nghia n6 1a mot nghién ctru c6
hé théng vé cac thudt toan va cac
cAu trac dit liéu cho cac dbi tuong
hinh hoc, chi yéu tap trung vao céc
thuat toan chinh xac tiém can
nhanh. Nhiéu nha nghién ctu bi
cubn hat boi nhitng thach thirc xuét
hi€n tir cac bai toan hinh hoc. Con
duong tir phat biéu van dé t6i cac
gidi phap hiéu qua va tinh té
thuong 1a mot qua trinh 1au dai, véi
nhiéu khé khin va cac két qua

collection of geometric
algorithms that are efficient,
and relatively easy to

understand and implement.

This book describes the most

Important notions,
techniques, algorithms, and
data structures from

computational geometry in a
way that we hope will be
attractive to readers who are
interested in applying results
from computational
geometry. Each chapter is
motivated with a real
computational problem that
requires geometric algorithms
for its solution. To show the
wide applicability of
computational geometry, the
problems were taken from
various application areas:
robotics, computer graphics,
CAD/CAM, and geographic
information systems.

You should not expect ready-
to-implement software
solutions for major problems
in the application areas.
Every chapter deals with a
single concept in
computational geometry; the
applications only serve to
introduce and motivate the
concepts. They also illustrate
the process of modeling an
engineering problem and
finding an exact solution.

trung gian chua toi wu. Ngay nay,
da c6 mot lugng ddi dao cac thuat
toan hinh hoc hi€u qua va tuong
d61 d& hiéu ciing nhu dé thyc thi.

Cubn sich nay mo ta cac khai
niém, cac ky thuat, cac thuat toan
va cau tric dir liéu quan trong nhit
trong hinh hoc tinh toan nhim dén
nhitng doc gia mudn ap dung cac
két qua cua hinh hoc tinh todn dé
giai quyét cac van dé cu thé. Mbi
chuong duoc bat ddu bang mot bai
toan tinh toan thuc té, va nhitng bai
toan ndy can cac thuit toan hinh
hoc dé giai quyét. Pé giup ngudi
doc thiy dugc ung dung rong rii
cua hinh hoc tinh todn, ching to61
liy céac vi du tir nhiéu linh vuc Gng
dung khéc nhau: robot, dd hoa may
tinh, CAD / CAM, va cac hé thong
thong tin dia 1y.

Ban khong nén trong chd cac giai
phap phan mém d& thuc thi cho céc
bai toan 16n trong cac linh vuc Ung
dung. Mdi chuong s& dé& cap dén
mot khai niém duy nhat trong hinh
hoc tinh todn; Uing dung chi dong
vai tro gidi thiéu va thic day viéc
tim hiéu khai niém. Ching ciing
minh hoa qud trinh m6 hinh hoa
mot bai toan ky thudt va tim mot
nghiém chinh xac.

1.1

Hulls
Good solutions to algorithmic
problems of a geometric
nature are mostly based on
two ingredients. One is a
thorough understanding of the
geometric properties of the
problem, the other is a proper
application of algorithmic
techniques and data
structures. If you don’t
understand the geometry of
the problem, all the
algorithms of the world won’t
help you to solve it
efficiently. On the other hand,
even if you perfectly
understand the geometry of
the problem, it is hard to
solve it effectively if you
don’t know the right
algorithmic techniques. This
book will give you a thorough
understanding of the most
Important geometric concepts
and algorithmic techniques.

To illustrate the issues that
arise in developing a
geometric algorithm, this
section deals with one of the
first problems that was
studied in computational
geometry: the computation of
planar convex hulls. We’ll
skip the motivation for this
problem here; if you are
interested you can read the
introduction to Chapter 11,
where we study convex hulls

An Example: Convex

1.1 Vi du: Cac bao 16i

Giai phap tot cho cac bai toan giai
thudt c6 ban chat hinh hoc dya trén
hai yéu t. Mot 1a hiéu thiu dao vé
cac tinh chét hinh hoc cua bai toan,
va thtr hai 1a 4p dung cac k¥ thuat
giai thuat va cau trac dir liéu thich
hop. Néu ban khong hiéu tinh chat
hinh hoc cua mot bai toan, tat ca
cac giai thuat trong thé gi6i ndy sé
khong gitup ban giai quyét no hiéu
qua. Mat khac, ngay ca khi ban da
hi€u thau ddo cac tinh chat hinh
hoc ctia bai toan, sé& rat khé dé giai
no6 hiéu qua néu ban khong ap dung
cac k¥ thuat gidi thuat thich hop.
Sach nay s& gitp ban hiéu rd céc
khai niém hinh hoc quan trong nhét
va cac ky thuat giai thuat.

Pé minh hoa cac van dé nay sinh
trong viéc xay dung thuat toan hinh
hoc, phin nay s& xét mot trong
nhimg bai toan dau tién duogc
nghién ctu trong hinh hoc tinh
toan: tinh toan c4c bao 16i phang.
Chiing t6i s& bo qua ngudn gbc clia
bai todn nay, néu ban quan tam,
ban c6 thé doc phan gi6i thicu ¢
chuong 11, trong chuong d6 ching
t61 xét cac bao 10i trong khéng gian

in 3-dimensional space.

A subset S of the plane is
called convex if and only if
for any pair of pointsp, qe S
the line segment pg is
completely contained in S.
The convex hull CH(S) of a
set S is the smallest convex
set that contains S. To be
more precise, it is the
intersection of all convex sets
that contain S.

We will study the problem of
computing the convex hull of
a finite set P of n points in the
plane. We can visualize what
the convex hull looks like by
a thought experiment.
Imagine that the points are
nails sticking out of the plane,
take an elastic rubber band,
hold it around the nails, and
let it go. It will snap around
the nails, minimizing its
length. The area enclosed by
the rubber band is the convex
hull of P. This leads to an
alternative definition of the
convex hull of a finite set P of
points in the plane: it is the
uniqgue convex polygon
whose vertices are points
from P and that contains all
points of P. Of course we
should prove rigorously that
this is well defined—that is,
that the polygon is unique
and that the definition is
equivalent to the one given

3 chiéu.

Mot tap hop con S cuia mat phﬁng
dugc goi 1a 161 khi va chi khi dbi
v6i bat ky cap diém p,q € S, doan
thaing pqg duoc chia hoan toan
trong S. Bao 16i CH(S) ctia mot tap
S 1a tap 16i nho nhat chira S. NOi
chinh x4c hon, né 1 giao cia tat ca
cac tap 10i chira S.

Chdng ta s€ nghién ctru bai toan
xac dinh bao 16i cia mdt tip hop
hiru han P chtra n diém trong mat
phang. Chung ta c6 thé hinh dung
bao 16i ¢6 dang nhu thé nio qua
mot thi nghi€ém tudng tugong nhu
sau. Gia sir cac diém 1a cac mong
nho ra khoi mit phang, lay mot day
cao su dan hoi, giit né xung quanh
cac moéng, va cut dé nd co lai tu
nhién. N6 sé bao xung quanh cac
madng tay, lam chiéu dai cta nd cyc
tiéu. Vung duoc bao quanh boi ddy
cao su chinh 1a bao 16i cua P. Piéu
nay dan dén mot dinh nghia khéc
vé bao 16i ciia mét tap hiru han P
clia cac diém trong mdt phang: n6
la da giac 161 duy nhat c6 cac dinh
la cac diém tir P va chua tat ca cac
diém cua P. D nhién chung ta co
thé ching minh mét cach chit ché
rang diéu ndy ton tai, tirc 13, da giac
l4 duy nhat va dinh nghia tuong

earlier, but let’s skip that in
this introductory chapter.

How do we compute the
convex hull? Before we can
answer this question we must
ask another question: what
does it mean to compute the
convex hull? As we have
seen, the convex hull of P is a
convex polygon. A natural
way to represent a polygon is
by listing its vertices in
clockwise order, starting with
an arbitrary one. So the
problem we want to solve is
this: given a set P = {pi, pn}
of points in the plane,
compute a list that contains
those points from P that are
the vertices of CH(P), listed
in clockwise order.

input = set of points:
Pi,P2,P3,P4,P5,P6,P7,P8,P9

output = representation of the
convex hull:

P4, P5, P8, P2, P9

The first definition of convex
hulls is of little help when we
want to design an algorithm
to compute the convex hull. It
talks about the intersection of
all convex sets containing P,
of which there are infinitely
many. The observation that

duong voi dinh nghia da dugc dua
ra trude day, nhung ching ta s€ bo
qua diéu d6 trong chwong nhap
maon nay.

Vay chung ta tinh toan bao 16i nhu
thé nao? Trudéc khi tra 16i cau hoi
nay ching ta phai tra 161 cau héi
khac: Tinh toan bao 10i c6 ngia 1a
gi? Nhu ching ta da thiy, bao 10i
ciia P 1a mot da giac 16i. Mot cach
tu nhién dé bicu dién da giac 13 liét
ké cac dinh cta n6 theo thur tu cung
chiéu kim déng hd, bit dau tir mot
dinh tuy y. Vay van dé ching ta
can giai quyét 13 nhu thé nay: cho
mot tap hop P = {pi, pn} cta cac
diém trong mit phang, tim mot
danh sach chira nhimg diém do tir
P, v&i diéu kién ching la cac dinh
cua CH (P), duoc liét ké theo chiéu
kim dong ho.

dau vao = tap hop céc diém:

Pi, P2, P3, P4, P5, P6, P7, P8, P9
Dau ra =bicu dién bao 16i:

P4, P5, P8, P2, P9

Pinh nghia dau tién vé bao 16i co
vé chua hitu dung trong truong hop
ching ta mudn thiét ké thuat toan
dé tinh bao 16i. N6 dé cap dén giao

clia tat ca cac tap 16i chira P, trong
s6 d6 co6 nhiéu tap vo han. Tinh

CH(P) is a convex polygon is
more useful. Let’s see what
the edges of CH(P) are. Both
endpoints P and g of such an
edge are points of P, and if
we direct the line through P
and g such that CH(P) lies to
the right, then all the points of
P must lie to the right of this
line. The reverse is also true:
if all points of P \{P, g} lie to
the right of the directed line
through P and q, then pq is an
edge of CH(P).

Now that we understand the
geometry of the problem a
little bit better we can
develop an algorithm. We
will describe it in a style of
pseudocode we will use
throughout this book.

Algorithm
SLOWCONVEXHULL(P)

Input. A set P of points in the
plane.

Output. A list L containing
the wvertices of CH(P) in
clockwise order.

1.EMO.

2.for all ordered pairs (p, q) e
P X P with p not equal to g
3.do valid <— true

4.for all points r e P not equal
toporq

chat CH (P) 1a mot da giac 16i hitu
ich hon. Chung ta hiy xét cac canh
cia CH (P) 1 gi. Ca hai diém muat
P va q clia mdt canh nhu thé Ia
nhirng diém thudc P, va néu chliing
ta huéng dudng thing qua p va q
sao cho CH (P) nam bén phai, thi
tat ca cac diém cia P phai nam bén
phai duong nay. Piéu nguoc lai
cling ding: néu tat ca cac diém
thuoc P \ {P, q} nam & bén phai
cua duong c6 hudng qua p va q, thi
pg la mot canh cua CH (P).

Bay gid ching ta da hiéu duoc hinh
hoc cua bai toan tbt hon mot chut
va ching ta c6 thé xay dung mot
thuat toan. Chung t61 s€ mod ta nd
theo kiéu ma gia va s& 1am nhu thé
trong toan bg sach nay.

Thuat toan

SLOWCONVEXHULL (P)

Pau vao. Mot tdp hop P bao gdm
cac diém trong mit phang.

Pau ra. Mot danh sach L chta céc
dinh ctia CH (P) theo chiéu kim
ddng ho.

1.E”O.

2. for tt ca céc cap co thur tu (p, q)
¢ PXP voi p khong b@ing q

3. do hop I¢ <- true

5.do if r lies to the left of the
directed line fromp to q
6.then valid " false.

7.if wvalid then Add
directed edge pq to E.

the

8. From the set E of edges
construct a list L of vertices
of CH(P), sorted in clockwise
order.

Two steps in the algorithm
are perhaps not entirely clear.

The first one is line 5: how do
we test whether a point lies to
the left or to the right of a
directed line? This is one of
the primitive operations
required in most geometric
algorithms. Throughout this
book we assume that such
operations are available. It is
clear that they can be
performed in constant time so
the actual implementation
will not affect the asymptotic
running time in order of
magnitude. This is not to say
that such primitive operations
are unimportant or trivial.
They are not easy to
implement correctly and their
implementation will affect the
actual running time of the
algorithm. Fortunately,

4 for tat ca cac diém khong

bang p hodc q

5. do néu r nam bén trai cua duong
cO hudng tir p dén q

6. then hop 1¢---false.

7. if hop 1€ then Thém canh co
hudng pq vao E.

8. Tu tap hop E cua cac canh xay
dung mot danh sach L cac dinh cua
CH (P), dugc sap xép theo chiéu
kim dong ho.

C¢ I€ con hai budce trong thuat toan
chua hoan toan rd rang.

Budc dau tién ¢ dong thir 5: 1am
sao dé ching ta kiém tra mot diém
nim bén trai hodc bén phai cla
duong c6 huong? Day 1a mot trong
nhitng phép toan co ban can thiét
trong da sb cac thuat toan hinh hoc.
Trong toan bd sach nay, chdng toi
gia str rang cac phép toan nhu thé
dd c6 san. RB rang, ching co thé
duogc thuc hién trong khoang thoi
gian hang, vi vy qua trinh thyc thi
thuc té s& khong anh hudong dén
thoi gian chay tiém can vao bac do
16n. Piéu nay khéng co nghia 1a
cic thuat toan co ban nhu thé la
khong quan trong hodc tim thuong.
Chung khong dé thuc thi chinh xé4c
va vi¢c thuyc thi chung s€ éanh

software libraries containing
such primitive operations are
nowadays available. We
conclude that we don’t have
to worry about the test in line
5; we may assume that we
have a function available
performing the test for us in
constant time.

The other step of the
algorithm that requires some
explanation is the last one. In
the loop of lines 2-7 we
determine the set E of convex
hull edges. From E we can
construct the list L as follows.
The edges in E are directed,
so we can speak about the
origin and the destination of
an edge. Because the edges
are directed such that the
other points lie to their right,
the destination of an edge
comes after its origin when
the vertices are listed in
clockwise order. Now remove
an arbitrary edge el from E.
Put the origin of el as the
first point into L, and the
destination as the second
point. Find the edge e2 in E

whose origin is the
destination of el, remove it
from E, and append its

destination to L. Next, find
the edge e3 whose origin is
the destination of €2, remove

huéng dén thoi gian chay thuc té
cua thuat toan. Tuy nhién, hién nay
dd co nhitng thu vién phan mém
chtra nhitng phép todn co ban nhu
thé. Chung t6i dam chéc rang ban
khong can phai lo ngai vé phép
kiém tra & dong sb 5, chung ta co
thé gia st rang chung ta ¢ sin mot
ham thuc hién kiém tra cho chung
ta trong khoang thoi gian hang,

Mot budc khac trong thudt toan
cling can giai thich thém 13 budc
cudi cung. Trong vong lap tir dong
2-7 ching t6i xac dinh tdp E cac
canh bao 16i. T E, ching ta c6 thé
xay dung mot danh sach L nhu sau.
Cac canh trong E c6 huong, vi vay
ching ta ¢6 thé ndi vé gbc va ngon
cua mot canh. Boi vi cdc canh c0
huéng sao cho cac diém khac nam
bén phai ctia chiung, ngon cuia mdt
canh s& dén sau gbc ctia né khi cac
dinh dugc liét ké theo chiéu kim
ddng ho. Bay gio loai bo mot canh
el bat ky khoi E. Pat gbc cua el
nhu diém dau tién vao L, va ngon
la diém thir hai. Tim canh e2 trong
E sao cho gdc ciia nd 1a ngon cua
el, loai bo né khoi E, va nbi ngon
ctia nd dén L.

Ti€p theo, tim canh e3 sao cho goc
cua no6 1a ngon cua e2, loai bd nod

it from E, and append its
destination to L. We continue
in this manner until there is
only one edge left in E. Then
we are done; the destination
of the remaining edge is
necessarily the origin of el,

which is already the first
point in L. A simple
implementation of this

procedure takes O(n2) time.
This can easily be improved
to O(nlogn), but the time
required for the rest of the
algorithm dominates the total
running time anyway.

Analyzing the time
complexity of
SlowConvexHull is easy. We
check n2 - n pairs of points.
For each pair we look at the n
- 2 other points to see
whether they all lie on the
right side. This will take
O(n3) time in total. The final
step takes O(n2) time, so the
total running time is O(n3).
An algorithm with a cubic
running time is too slow to be
of practical use for anything
but the smallest input sets.
The problem is that we did
not use any clever
algorithmic design
techniques; we just translated
the geometric insight into an
algorithm in a brute-force
manner. But before we try to
do better, it is useful to make
several observations about

khoi E, va ndi ngon cta n6 dén L.
Ching ta tiép tuc quy trinh nay cho
dén khi chi con mét canh con lai
trong E. Sau d6, ching ta hoan
thanh, ngon cua canh con lai bat
budc 1a gbc cua el, do chinh 1a
diém dau tién trong L. Vi¢c thuc
thi qua trinh don gian nay mat
khoang thoi gian 1a O (n2). Co thé
cai thién thém dé dat duoc thoi
gian O (nlogn), nhung du sao di
nita, thoi gian can thiét cho phan
con lai cua giai thuat méi chiém
phan 16n téng thoi gian chay.

Vi¢c phan tich d0 phuc tap thoi
gian cua thuat toan
SlowConvexHull kha dé. Chung ta
kiém tra n® - n cap diém. Dbi véi
mdi cip, ching ta xét n - 2 diém
khac dé xem liéu tit ca chung co
nim phia bén phai hay khong.
Tong thoi gian cho qué trinh nay 13
O(n3). Budc cudi cung mit khoang
thoi gian 1a O (n2), vi vay tong thoi
gian chay 1a O (n3). M{t thuat toan
cO thoi gian chay mi ba la qua
cham dé Gng dung thyc té nhung
cac tp hop dau vao nho nhit. Van
dé 1a chung ta da khong st dung
bat ky k¥ thuat thiét ké thuat toan
khéo Iéo nao, ching ta chi chuyén
hiéu biét hinh hoc vao trong mot
thuat toan theo kiéu vét can. Nhung
truc khi chung ta c¢b ging cai

this algorithm.

We have been a bit careless
when deriving the criterion of
when a pair p, q defines an
edge of CH(P). A point r does
not always lie to the right or
to the left of the line through
p and g, it can also happen
that it lies on this line. What
should we do then? This is
what we call a degenerate
case, or a degeneracy for
short. We prefer to ignore
such situations when we first
think about a problem, so that
we don’t get confused when
we try to figure out the
geometric properties of a
problem. However, these
situations do arise in practice.
For instance, if we create the
points by clicking on a screen
with a mouse, all points will
have small integer
coordinates, and it is quite
likely that we will create
three points on a line.

To make the algorithm
correct in the presence of
degeneracies we must
reformulate the criterion
above as follows: a directed
edge pq is an edge of CH(P)
if and only if all other points r
e P lie either strictly to the
right of the directed line
through p and g, or they lie

thién diéu nay, ching ta nén nhin
lai thuat toan nay.

Ching ta hoi bat can khi rut ra tiéu
chuan khi nao cdp p, q xac dinh
mot canh cua CH (P). Mot diém r
khong phai luon ludn lac nao cling
nam bén phai hodc bén trai cua
duong thang di qua p Va g, cling co
khi né ngau nhién nam trén dudong
nay. Thé thi ching ta nén lam gi?
Chung ta goi day la truong hop suy
bién, hodc ndéi ngin gon 13 suy
bién. Chlng t6i mudn bd qua céc
tinh hudng nhu vay khi lan dau tién
ching ta xét bai todn, vi vay ching
ta khong bi 13n 1on vé thoi diém rat
ra cac tinh chéat hinh hoc cua bai
toan. Tuy nhién, nhitng tinh huéng
nhu thé ciing c6 thé nay sinh trong
thuc té. Vi du, néu ching ta tao ra
cac diém bang cach nhip chudt trén
man hinh, tit ca cac diém c6 toa do
nguyén nho, va rit c6 kha ning
ching ta sé tao ra ba diém trén mét
duong thang.

Pé thyc hién céac thuit toan chinh
Xac trong truong hop suy bién,
chung ta phai phat biéu lai tiéu
chuan trén nhu sau: mot canh pq cé
hudng 1a canh cua CH (P) khi va
chi khi tit ca cac diém
khac...... nim & bén phai cia
duong c6 huéng qua p va q, hoac

on the open line segment pg.
(We assume that there are no
coinciding points in p.) So we
have to replace line 5 of the

algorithm by this more
complicated test.
We have been ignoring

another important issue that
can influence the correctness
of the result of our algorithm.
We implicitly assumed that
we can somehow test exactly
whether a point lies to the
right or to the left of a given
line. This is not necessarily
true: if the points are given in
floating point coordinates and
the computations are done
using floating point
arithmetic, then there will be
rounding errors that may
distort the outcome of tests.

Imagine that there are three
points p, ¢, and r, that are
nearly collinear, and that all
other points lie far to the right
of them. Our algorithm tests
the pairs (p, q), (r, g), and (p,
r). Since these points are
nearly collinear, it is possible
that the rounding errors lead
us to decide that r lies to the
right of the line from p to q,
that p lies to the right of the
line from r to g, and that g
lies to the right of the line
from p to r. Of course this is
geometrically impossible—
but the floating point

chung nam trén doan thang mé pa.
(Ching ta gia sir rang khong ¢ cac
diém trung trong p.) Vi vay, ching
ta phai thay thé dong tht 5 cua
thut toan bang phép kiém tra phtc
tap nay.

Ching ta dd bo qua mot van dé
quan trong khac c6 thé anh huong
dén tinh chinh xac cua cac két qua
thuat toan. Chlng ta di ngadm gia
dinh rang, bang cach nao do, chung
ta co6 thé kiém tra chinh xac mot
diém nam bén phai hay bén trai ctia
mot dudng nhat dinh. Diéu nay
khong nhat thiét 1a dung: néu cac
diém duoc cho trong toa do dau
chim dong, thi sé xuét hién sai s6
lam tron co6 thé 1am sai 1éch céac két
qua cua phép kiém tra.

Hay tudong tuong rang co ba diém
P, g, I, gAn nhu thang hang, va tat
ca cac diém khic nam xa bén phai
chiung. Thuit todn cua ching ta
kiém tra céc cip (p, q), (t,), va (p,
r). Vi cac diém ndy gan thang hang,
c6 kha nang 13 sai s6 lam tron 1am
chung ta két luan rang r nam bén
phai cua duong thang di tir p dén q,
va p nam bén phai ctia dudng thang
tir r dén q, va q nam bén phai cia
duong thing tir p dén r. Tat nhién,
vé mit hinh hoc, diéu nay khéng
thé xay ra, nhung sd hoc dau cham

arithmetic doesn’t know that!
In this case the algorithm will
accept all three edges. Even
worse, all three tests could
give the opposite answer, in
which case the algorithm
rejects all three edges, leading
to a gap in the boundary of
the convex hull. And this
leads to a serious problem
when we try to construct the
sorted list of convex hull
vertices in the last step of our
algorithm. This step assumes
that there is exactly one edge
starting in every convex hull
vertex, and exactly one edge
ending there. Due to the
rounding errors there can
suddenly be two, or no, edges
starting in vertex p. This can
cause the program
implementing our simple
algorithm to crash, since the
last step has not been
designed to deal with such
inconsistent data.

Although we have proven the
algorithm to be correct and to
handle all special cases, it is
not robust: small errors in the
computations can make it fail
in completely unexpected
ways. The problem is that we
have proven the correctness
assuming that we can
compute exactly with real
numbers.

dong khong biét diéu do! Trong
truong hop ndy, thuat toan s& chip
nhan tit ca ba canh. Tham chi, té
hon nita, tat ca ba phép kiém tra
cho ra két qua trdi nguoc, trong
truong hop nay, thuat toan loai bo
ca ba canh, din dén mot khoang
trbng & bién cia bao 16i. Va diéu
nay din dén mot van dé nghiém
trong khi ching ta xdy dung danh
sach cac dinh duogc sap xép cia bao
16i & budc cudi cung cia thuit toan
clia chung ta. Budc ndy gia sir rang
c6 ding mot canh bat diu ¢ mdi
dinh cta bao 10i, va co ding mot
canh két thiac ¢ do. Do cac sai sd
lam tron, c6 thé dot nhién cé hai,
hodc khong c6 canh nao bat dau &
dinh p. Diéu nay c6 thé 1lam sup d6
viéc thuc thi thuat toan don gian
ciia ching ta, bdi vi khi thiét ké
budc cubi cung ching ta chua tinh
dén cac dir liéu khong nhit quan
nhu thé.

Mic du ching ta da chirng minh
thuat toan chinh xac va c6 thé xir ly
duoc tit ca cac truong hop dac biét,
nhung n6 khong manh mé: cac sai
s6 nho trong tinh toan c6 thé lam
cho n6 sai theo nhitng cach ching
ta khong luong trude duge. Van dé
la chung ta da chirng minh tinh
chinh xac gia sir rang ching ta co

We have designed our first
geometric algorithm. It
computes the convex hull of a
set of points in the plane.
However, it is quite slow—its
running time is O(n3)—, it
deals with degenerate cases in
an awkward way, and it is not
robust. We should try to do
better.

To this end we apply a
standard algorithmic design
technique: we will develop an
incremental algorithm. This
means that we will add the
points in P one by one,
updating our solution after
each addition. We give this
incremental approach a
geometric flavor by adding
the points from left to right.
So we first sort the points by
x-coordinate, obtaining a
sorted sequence plpn, and
then we add them in that
order. Because we are
working from left to right, it
would be convenient if the
convex hull vertices were
also ordered from left to right
as they occur along the
boundary. But this is not the
case. Therefore we first
compute only those convex
hull vertices that lie on the
upper hull, which is the part
of the convex hull running

thé tinh chinh xac vd1 cac so thuec.

Chung ta vira hoan thanh viéc thiét
ké thuat toan hinh hoc dau tién. N6
tinh bao 16i ctia mot tap hop diém
trong mit phang. Tuy nhién, né quéa
cham-thoi gian chay cua n6 la O
(N3) -, né c6 thé giai cac truong
hop suy bién nhung rat khé khan,
va n6 khong manh. Ching ta nén
¢ gang cai thién no.

Trong phan cudi ndy, ching ta ap
dung mot ky thuat thiét ké thuat
toan tiéu chuan: ching ta s& xdy
dung mot thuat toan gia ting. Diéu
nay c¢6 nghia 1a ching ta s€ thém
tung diém mot vao P, cap nhat
nghiém cua ching ta sau mdi lan
thém vao. Chung ta s€ cho giai
thuat gia tang nay mot huong vi
hinh hoc bang cach thém vao cac
diém tr trai sang phai. Vi vay,
truéc hét chung ta sip xép cac
diém theo toa dd x, thu dugc mot
chudi dugc sip xép plpn, va sau do
chung ta thém ching theo thu tu
d6. Boi vi ching ta dang tién hanh
tor trai sang phai, s€ tién logi hon
néu cac dinh cta bao 16i duge xép
thr tu tur trai sang phai khi chiing
xuat hién doc theo bién. Nhung
diéu nay khong dung. Vi vay, trude
hét, chung ta chi tinh toan cac dinh
bao 10i ndm trén bao trén, d6 la

from the leftmost point pl to
the rightmost point pn when
the vertices are listed in
clockwise order. In other
words, the upper hull contains
the convex hull edges
bounding the convex hull
from above. In a second scan,
which is performed from
right to left, we compute the
remaining part of the convex
hull, the lower hull.

The basic step in the
incremental algorithm is the
update of the upper hull after
adding a point pi. In other
words, given the upper hull of
the points pl;.., p—1, we
have to compute the upper
hull of pl;..., pi. This can be
done as follows. When we
walk around the boundary of
a polygon in clockwise order,
we make a turn at every
vertex. For an arbitrary
polygon this can be both a
right turn and a left turn, but
for a convex polygon every
turn must be a right turn. This
suggests handling the
addition of pi in the following
way. Let Lupper be a list that
stores the upper vertices in
left-to-right order. We first
append pi to Lupper. This is
correct because pi is the
rightmost point of the ones
added so far, so it must be on
the upper hull. Next, we
check whether the last three

phan bao 10i chay tir diém trai cung
pl dén diém phai cung pn khi cac
dinh dugc liét ké theo chiéu kim
ddng hd. Noi cach khac, bao trén
chtra cac canh bao 10i bao quanh
bao 16i tir trén. O 1an quét thir hai,
chung ta thuc hién tr phai sang
trai, chung ta tinh toan ph::in con lai
ctia bao 161, bao dudi.

Budc co ban trong thuat todn gia
tang la cap nhat bao trén sau khi
thém mot diém pi. Noi cach khac,
vo1 mot bao trén cho trudc cua cac
diém pl, ..., p-1, ching ta phai tinh
bao trén cta pl, ..., pi. Piéu ndy co
thé dugc thyc hién nhu sau. Khi
chuing ta di quanh bién cua da gidc
theo chiéu kim déng hd, chung ta
dd di modt vong quanh mdi dinh.
D6i véi mot da gidc tuy y, ddy co
thé 13 vong trai hoic vong phai,
nhung dbi véi mot da giac 16i moi
vong déu 1a vong phai. Piéu nay
go1 y cho chung ta cach thirc thém
pi nhu sau. Gia st Lupper 1a mot
danh sach luu trit cac dinh trén theo
thir tu trai sang phai. Trudc tién
ching ta thém pi vao Lupper. Diéu
nay 1a dung boi vi pi 1a diém bén
phai cing cua cac diém dugc cong
dén luc nay, vi vay nd phai nam ¢
bao trén. Tiép theo, chung ta kiém

points in Lupper make a right
turn. If this is the case there is
nothing more to do; Lupper
contains the vertices of the
upper hull of p1,..., pi, and we
can proceed to the next point,
pi+1l. But if the last three
points make a left turn, we
have to delete the middle one
from the upper hull. In this
case we are not finished yet:
it could be that the new last
three points still do not make
a right turn, in which case we
again have to delete the
middle one. We continue in
this manner until the last
three points make a right turn,
or until there are only two
points left.

We now give the algorithm in
pseudocode. The pseudocode
computes both the upper hull
and the lower hull. The latter
is done by treating the points
from right to left, analogous
to the computation of the
upper hull.
AlgorithmCONVEXHULL(P
)
Input. A set P of points in the
plane.

Output. A list containing the
vertices of CH(P) in
clockwise order.

1. Sort the points by x-
coordinate, resulting in a
sequence p1l,..., pn.

tra xem ba diém cudi cing nam
trong Lupper c6 tao ra vong phai
hay khong. Néu diéu nay dung,
chung ta khong can lam thém diéu
gi nira; Lupper chtra cic dinh cua
bao trén cua pl, ..., pi, va chung ta
c6 thé tiép tuc v6i diém tiép theo,
pi+1. Nhung néu ba diém cudi tao
ra mQt vong trai, ching ta phai x6a
diém ¢ gitta tir bao trén. Trong
trudng hop nay, ching ta van chua
hoan thanh: c6 thé ba diém mdi van
chua tao tao ra mdt vong phai,
trong truong hop nay ching ta phai
x0a diém ¢ giita. Chlng ta tiép tuc
theo cach nay cho dén khi ba diém
cudi cing tao ra mot vong phai,
hodc cho dén khi chi con hai diém.

Bay gio ching ta dua ra thuat toan
dudi dang ma gid. Ma gia tinh todn
cd bao trén va bao dudi. Truong
hop sau dugc thuc hién béng cach
xét cac diém tir phai sang trai,
tuong tu nhu tinh toan bao trén.

Thuat tooan CONVEXHULL (P)
Pau vao. Mot tap hop P céc diém

trong mat phang.

Pau ra. Mot danh sach chira cac
dinh ctia CH (P) theo chiéu kim
ddng ho.

2. Put the points pl and
p2 in a list Lupper, with p1 as
the first point.

3. fori~3ton
4, do Append pi to
Lupper.

5. while Lupper contains
more than two points and the
last three points in Lupper do
not make a right turn

6. do Delete the middle of
the last three points from
Lupper.

7. Put the points pn and
pn-1 in a list Liower, with pn
as the first point.

8. fori”n-2downto i

9. do Append Pi to
Llower.

10. while Llower contains
more than 2 points and the
last three points

in Llower do not make a right
turn

11. do Delete the middle of
the last three points from
Llower.

12. Remove the first and the
last point from Llower to
avoid duplication of the
points where the upper and
lower hull meet.

13. Append Llower to

1.Sdp xép cac diém theo toa do X,
cho ra chudi p1, ..., pn.

2. bat cac diém pl va p2 trong
danh sach Lupper, véi pl 1a diém
dau tién.

3.for*3ton

4. do Thém pi vao Lupper.

5. While Lupper chtra nhiéu hon
hai diém va ba diém cudi cing
trong Lupper khéng tao ra vong
phai

6. do Xoa diém giira trong ba diém
cudi cung tir Lupper.

7. it cac diém pn va pn-1 VAo
danh sach Liower, véi pn 1a diém
dau tién.

8. for i n -2 downto i
9. do Thém Pi vao Llower.

10. while Llower chira nhiéu hon 2
diém va ba diém cudi cing

trong Llower khong tao ra vong
phai

11. do Xoa diém giita trong ba
diém cudi tir Llower.

12. Loai bo diém dau tién va diem
cudi cung tir Llower dé tranh trung
lap trong nhitng diém bao trén va

Lupper, and call the resulting
list L.
14. return L

Once again, when we look
closer we realize that the
above algorithm is not
correct. Without mentioning
it, we made the assumption
that no two points have the
same x-coordinate. If this
assumption is not valid the
order on x-coordinate is not
well defined. Fortunately, this
turns out not to be a serious
problem. We only have to
generalize the ordering in a
suitable way: rather than
using only the x-coordinate of
the points to define the order,
we use the lexicographic
order. This means that we
first sort by x-coordinate, and
if points have the same x-
coordinate we sort them by y-
coordinate.

Another special case we have
ignored is that the three
points for which we have to
determine whether they make
a left or a right turn lie on a
straight line. In this case the
middle point should not occur
on the convex hull, so
collinear points must be
treated as if they make a left
turn. In other words, we
should use a test that returns
true if the three points make a
right turn, and false

dudi gap nhau.

13. Thém Llower vao Lupper, va
goi danh sach L cudi cling.

14. tra vé L

Mot 1an nita, khi ching ta xét ky
hon, chung ta thiy rang thuat toan
trén khong chinh xac. Chang ta da
gia thiét rang khong cé hai diém
nao c6 cung toa do x. Néu diéu nay
khong dang, thtr ty trén toa do x
khong rd rang. Tuy nhién, hda ra
diéu nay khong phai la van dé
nghiém trong. Ching ta chi can
tong quat hoa thir tu mot cach phu
hop: thay vi chi st dung toa d§ X
cta cac diém dé xac dinh th tu,
ching ta st dung thir tu chir cai.
Tuc 13, trude hét ching ta sip xép
theo toa dd x, va néu cac dém co
cing toa d6 x thi ching ta xép
chuing theo toa do y.

Mot treong hop dac biét ma chdng
ta dd bo qua 13 xac dinh ba diém
tao ra vong trdi hay vong phai trén
mot duong thang. Trong trudng
hop nay, diém giita khong nén xuit
hién trén bao 16i, vi vAy cic diém
thang hang phai dugc xem 1a tao
vong trai. Noi cach khac, chdng ta
nén st dung mot phép kiém tra tra
vé két qua dang néu ba diém tao ra

otherwise. (Note that this is
simpler than the test required
in the previous algorithm
when there were collinear
points.)

With these modifications the
algorithm correctly computes
the convex hull: the first scan
computes the upper hull,
which is now defined as the
part of the convex hull
running from the
lexicographically ~ smallest
vertex to the
lexicographically largest
vertex, and the second scan
computes the remaining part
of the convex hull.

What does our algorithm do
in the presence of rounding
errors in the floating point
arithmetic? When such errors
occur, it can happen that a
point is removed from the
convex hull although it
should be there, or that a
point inside the real convex
hull is not removed. But the
structural integrity of the
algorithm is unharmed: it will
compute a closed polygonal
chain. After all, the output is
a list of points that we can
interpret as the clockwise
listing of the vertices of a
polygon, and any three
consecutive points form a
right turn or, because of the
rounding errors, they almost

mot vong phai, va sai trong truong
hop nguoc lai. (Luu ¥ rang phép
kiém tra nay don gian hon phép
kiém tra can thiét trong thuét toan
trude day khi c¢6 cac diém thang
hang.)

V6i nhitng thay ddi nay, thuit toan
s& tinh chinh x4c bao 10i: lan quét
dau tién tinh toan bao trén, hién tai
n6 dugc dinh nghia 1a phﬁn cua bao
16i chay tir dinh nhé nhét theo thu
tw chit cai dén dinh 16n nhat theo
tha tu chit cai, va lan quét thir hai
tinh todn phan con lai ctia bao 16i.

Thuét todn cua ching ta lam gi khi
6 su hién dién cua sai sd lam tron
trong s6 hoc ddu chim dong? Khi
nhirng sai s6 nhu thé xay ra, c¢6 kha
nang mot diém nao dé bj loai bd
khoi bao 16i mdc du sy hién dién
ciia n6 ¢ d6 1a hop 1y, hodc diém
bén trong bao 16i thuc khong dugc
loai bé. Nhung tinh toan ven cau
truc cua thuat toan khong bi anh
huong gi: nd sé tinh toan mot chudi
da giac khép kin. Sau cung, dau ra
la mot danh sach cac diém ma
ching ta c6 thé xem 1 mot danh
sach cac dinh cua da giac theo
chiéu kim dong ho, va bat ky ba

form a right turn. Moreover,
no point in P can be far
outside the computed hull.
The only problem that can
still occur is that, when three
points lie very close together,
a turn that is actually a sharp
left turn can be interpretated
as a right turn. This might
result in a dent in the
resulting polygon. A way out
of this is to make sure that
points in the input that are
very close together are
considered as being the same
point, for example by
rounding. Hence, although
the result need not be exactly
correct—but then, we cannot
hope for an exact result if we
use inexact arithmetic—it
does make sense. For many
applications this is good
enough. Still, it is wise to be
careful in the implementation
of the basic test to avoid
errors as much as possible.

We conclude with the

following theorem:

Theorem 1.1 The convex hull
of a set of n points in the
plane can be computed in
O(nlogn) time.

Proof. We will prove the
correctness of the

diém lién tiép nao tao thanh mot
vong phai, hodc do cac sai sd 1am
tron, ching gén nhu tao thanh mot
vong phai. Hon ntra, khong coé
diém nao thudc P ndm xa bén ngoai
bao dugc tinh toan. Van dé duy
nhat con lai 13, khi ba diém ndm rat
gan nhau, mot vong thuc sy 13
vong trai & nét c6 thé duoc xem 1a
vong phai. Piéu nay c6 thé din dén
mot vét 1om trong da gidc cubi
cing. Ching ta c6 thé giai quyét
van dé nay bang cach dam bao rang
cac diém ¢ dau vao rat gin nhau
dugc xem la ciing mot diém, chang
han nhu bang cach lam tron. Do
d6, mic du két qua khéng can
chinh xac tuyét dbi -nhung sau do,
ching ta khong thé mong doi mot
két qua chinh xac néu ching ta
dung s6 hoc khong chinh xac-nd
khong c¢6 nghia. P61 v6i nhiéu tng
dung, diéu nay da dap ung duoc.
Tuy nhién, can than trong qua trinh
thue hién céc phép kiém tra co ban
dé tranh céac sai s6 & murc t6i théu
la mét viéc 1am khon ngoan.

Ching ta két luan voi dinh 1y sau
day:

binh 1y 1.1 Bao 16i cia mot tap
hop n diém trong mit phang c6 thé
dugc tinh trong thoi
(nlogn).

gian O

computation of the upper
hull; the lower hull
computation can be proved
correct using similar
arguments. The proof is by
induction on the number of
point treated. Before the for-
loop starts, the list Lupper
contains the points pl and p2,
which trivially form the upper
hull of {pl, p2}. Now
suppose that Lupper contains
the upper hull vertices of
{p1,..., pi-1} and consider the
addition of pi. After the
execution of the while-loop
and because of the induction
hypothesis, we know that the
points in Lupper form a chain
that only makes right turns.
Moreover, the chain starts at
the lexicographically smallest
point of {p1,..., pi} and ends
at the lexicographically
largest point, namely pi. If we
can show that all points of
{pl,..., pi} that are not in
Lupper are below the chain,
then Lupper contains the
correct points. By induction
we know there is no point
above the chain that we had
before pi was added. Since
the old chain lies below the
new chain, the only
possibility for a point to lie
above the new chain is if it
lies in the wvertical slab
between pi-1 and pi. But this
IS not possible, since such a

Ching minh. Chdng ta s€ ching
minh sy chinh xac cua quy trinh
tinh bao trén; chung ta ciing c6 thé
danh gia tinh chinh x4c cua quy
trinh tinh bao dudi bang lap luan
tuong tu. Ching minh duogc thuc
hién bang phuong phap quy nap
dua trén sb diém duogc xét. Trude
khi vong lap for bat dau, danh sach
Lupper chta cac diém pl va p2,
thuong tao thanh bao trén cua {pl,
p2}. Bay gio gia su Lupper chtra
cac dinh bao trén cua {pl, ..., pi-1}
va xét viéc thém vao pi. Sau khi
thuc hién vong ldp while va vi gia
thuyét quy nap, ching ta biét rang
cac diém trong Lupper tao thanh
mot chudi chi tao ra cac vong phai.
Hon nita, chudi bit diu tai diém
nhod nhét theo thr tu chit cai cua
{pl, ..., pi} va két thic tai diém 16n
nhat theo thtt tu chit cai, cu thé la
pi. Néu chung ta c6 thé chirng minh
rang tit ca cac diém {pl, ..., pi}
khong nam trong Lupper nim bén
dudi chudi, thi Lupper chia cac
diém chinh xac. Bang phuong phap
quy nap, chiing ta biét duoc khong
¢6 diém nao & trén chudi ma chung
ta co trudc khi thém pi vao. Boi vi
chudi cli nim bén dudi chudi mdoi,
kha ning duy nhit dé mot diém
nam bén trén chudi mdi 1a nd phai
nam trong cac thanh doc giita pi-1

point would be in between pi-
1 and pi in the
lexicographical order. (You
should verify that a similar
argument holds if pi-1 and pi,
or any other points, have the
same x-coordinate.)

To prove the time bound, we
note that sorting the points
lexicographically can be done
in O(nlog n) time. Now
consider the computation of
the upper hull. The for-loop is
executed a linear number of
times. The question that
remains is how often the
while-loop inside it s
executed. For each execution
of the for-loop the while-loop
Is executed at least once. For
any extra execution a point is
deleted from the current hull.
As each point can be deleted
only once during the
construction of the upper hull,
the total number of extra
executions over all for-loops
iIs bounded by n. Similarly,
the computation of the lower
hull takes O(n) time. Due to
the sorting step, the total time
required for computing the
convex hull is O(nlogn). EO

The final convex hull
algorithm is simple to
describe and easy to

implement. It only requires
lexicographic sorting and a
test whether three consecutive

va pi. Nhung diéu nay khong thé
xay ra, boi vi mot diém nhu thé s&
nam gitta pi-1 va pi theo thir tu
bang chir cai. (Ban nén xac nhan
1ap luan tuong ty dang néu pi-1 va
pi, hodc bat ky diém khac, c6 cing
toa do X.)

Pé ching minh rang budc thoi
gian, chung ta chi y rang viéc sap
xép cac diém theo thu ty chit cai co
thé duoc thuc hién trong khoang
thoi gian O(NLog n). Bay gio xét
qua trinh tinh toan bao trén. VVong
lap for dugc thuc hién mot sb lan
tuyén tinh. Van dé con lai 1a vong
lap bén trong ndé dugc thuc hi¢n
bao lau mot lan. Mdi lan thyuc thi
vong ldp for, vong 1dp while dugc
thuc thi it nhat mot lan. Déi voi
nhirng lan thuc thi bd sung, mot
diém duoc phat hién tir bao hién
tai. Boi vi méi diém chi co thé
duoc phat hién mét lan trong qua
trinh xay dung bao trén, tong so lan
thue thi phu trong tit ca cac vong
lap for c6 can la n. Twong tu, tinh
toan bao dudi mat khoang thoi gian
O (n). Do cac budc sip xép, tong
thoi gian can thiét dé tinh bao 16i 1a
O (nlogn). EO

Thuat toan bao 161 cudi cung don
gian va dé thyc hién. N6 chi doi
héi sap xEp theo thur tu chir cai va

points make a right turn.
From the original definition
of the problem it was far from
obvious that such an easy and
efficient solution would exist.

1.2 Degeneracies and
Robustness

As we have seen in the
previous section, the

development of a geometric
algorithm often goes through
three phases.

In the first phase, we try to
ignore everything that will
clutter our understanding of
the geometric concepts we
are dealing with. Sometimes
collinear points are a
nuisance, sometimes vertical
line segments are. When first
trying to design or understand
an algorithm, it is often
helpful to ignore these
degenerate cases.

In the second phase, we have
to adjust the algorithm
designed in the first phase to
be correct in the presence of
degenerate cases. Beginners
tend to do this by adding a
huge number of case
distinctions to their
algorithms. In many
situations there is a better
way. By considering the
geometry of the problem
again, one can often integrate
special cases with the general
case. For example, in the

kiém tra xem ba diém lién tiép co
tao thanh vong phai hay khong. Tur
dinh nghia ban dau cua bai toén,
chung ta d& dang thdy dugc kha
nang tdn tai ctia mot cach giai hi¢u
qua va don gian nhu thé.

1.2 Sy suy bién va tinh manh mé

Nhu ching ta da thay trong phan
trudc, vigc xay dung thuadt toan
hinh hoc thudng bao gom ba giai
doan.

Trong giai doan dau, ching ta cd
gang bo qua moi thit ¢ kha ning
lam nhiéu nhiing kién thic hinh
hoc cua ching ta vé van dé dang
xét. Poi khi, cac diém thang hang
lai gy phién todi, cac doan thang
dung cling vay. Khi lan dau tién
thiét ké va tim hiéu vé mot thuét
todn, ching ta nén bd qua nhiing
truong hop suy bién nay.

Trong giai doan hai, ching ta phai
dicu chinh céc thuat todn dugc thiét
ké trong giai doan dau tién cho
chinh xac hon khi c6 cac truong
hop suy bién. Nhitng ngudi méi bat
dau c6 khuynh hudéng phan chia bai
toan thanh nhidu truong hop khi
xday dung thudt toan. Tuy nhién,
trong mot s6 truong hop, ching ta
lai ¢6 cach khac tét hon. Mot lan
nira, qua vi¢c xét tinh chét hinh hoc

convex hull algorithm we
only had to use the
lexicographical order instead
of the order on x-coordinate
to deal with points with equal
x-coordinate. For most
algorithms in this book we
have tried to take this
integrated approach to deal
with special cases. Still, it is
easier not to think about such
cases upon first reading. Only
after understanding how the
algorithm works in the
general case should you think
about degeneracies.

If you study the
computational geometry
literature, you will find that
many authors ignore special
cases, often by formulating
specific assumptions on the
input. For example, in the
convex hull problem we
could have ignored special
cases by simply stating that
we assume that the input is
such that no three points are
collinear and no two points
have the same Xx-coordinate.
From a theoretical point of
view, such assumptions are
usually justified: the goal is
then to establish the
computational complexity of
a problem and, although it is
tedious to work out the

cua bai toan, chung ta thuong co
thé két hop cac trudong hop dic biét
v6i truong hop tong quat. Vi duy,
trong thut toan bao 10i chung ta
chi can dung tht tu bang chir céi
thay cho thir tu theo toa do x dé xét
cac diém c6 toa do x nhu nhau. DJi
v6i da sb cac thuat toan trong sach
nay, chlng ta can thir phuong phap
tiép can tich hop nay dé xét cac
truong hop diac biét.Tuy nhién,
trong lan doc dau tién, ching ta
khong thé nghi ra duoc cac trudng
hop nhu thé. Chi sau khi hiéu biét
vé cach thirc hoat dong cua thuat
toan trong truong hop tong quat,
ching ta méi c6 thé nghi ra duoc
cac trudng hop suy bién.

Néu ban nghién ctru cac tai li€u
hinh hoc tinh toan, ban sé théy réng
nhidu tic gia bd qua CAC trudng
hop dac biét, thong qua viéc phat
biéu cac gia thuyét dic biét & dau
vao. Vi dy, trong bai toan bao 10i,
ching ta da bé qua céac truong hop
ddc biét bang cach phat biéu don
gian rang chung ta gia st rang dau
vao khong c6 ba diém thang hang
va khong c6 hai diém nao co cing
toa do x. T quan diém 1y thuyét,
gid thuyét ndy c6 vé chap nhdn
duoc: muc tiéu la dé didu khién
murc d§ phuc tap cua bai toan va,
mic du xét ting truong hop chi tiét

details, degenerate cases can
almost always be handled
without increasing the
asymptotic complexity of the
algorithm. But special cases

definitely Increase the
complexity of the
implementations. Most

researchers in computational
geometry today are aware
that their general position
assumptions are not satisfied
in practical applications and
that an integrated treatment of
the special cases is normally
the best way to handle them.
Furthermore, there are
general techniques—so-called
symbolic perturbation
schemes—that allow one to
ignore special cases during
the design and
implementation, and still
have an algorithm that is
correct in the presence of
degeneracies.

The third phase is the actual
implementation. Now one
needs to think about the
primitive operations, like
testing whether a point lies to
the left, to the right, or on a
directed line. If you are lucky
you have a geometric
software library available that
contains the operations you
need, otherwise you must
implement them yourself.
Another issue that arises in
the implementation phase is

nhu thé rat té nhat, cac truong hop
suy bién ludn ludn c6 thé duoc xur
Iy ma khong tdng tinh phuc tap
tiém can cua thuat toan. Nhung cac
truomg hop dic biét chic chin ting
sy phuc tap trong viéc thuc thi.
Ngay nay, hiu hét cac nha nghién
ctru trong hinh hoc tinh toan déu
nhan thirc dugc rang cac gia thuyét
tong quat hoéa ciia ho khong phu
hop véi cac tng dung thuc té va
cach tiép can tich hop céc truong
hop dac biét thuong 1a cach gidi
quyét t6t nhat. Hon nita, c6 nhiing
ky thuat tong quét, duoc goi 13 so
dd nhidu loan ky tu, cho phép
ching ta bo qua cac truong hop dac
biét trong thiét ké va thuc thi, va
van con c¢6 mot thuit toan chinh
xac khi c6 suy bién.

Giai doan thtr ba 1a thyuc thi trong
thue té. Biy gio, chung phai nghi
dén cac phép toan co ban, chiang
han nhu kiém tra xem mot diém
nam bén trai, bén phai, hay nim
trén mot duong thing c6 hudng.
Néu ban may mén, ban c6 sdn mot
thu vién phan mém hinh hoc chta
cac phép toan can thiét, nguoc lai,
ban phai tu thuc hién chung.

that the assumption of doing
exact arithmetic with real
numbers breaks down, and it
IS necessary to understand the
consequences. Robustness
problems are often a cause of

frustration when
implementing geometric
algorithms. Solving

robustness problems is not
easy. One solution is to use a
package providing exact
arithmetic (using integers,
rationals, or even algebraic
numbers, depending on the
type of problem) but this will
be slow. Alternatively, one
can adapt the algorithm to
detect inconsistencies and
take appropriate actions to
avoid crashing the program.
In this case it is not
guaranteed that the algorithm
produces the correct output,
and it is important to establish
the exact properties that the
output has. This is what we
did in the previous section,
when we developed the
convex hull algorithm: the
result might not be a convex
polygon but we know that the
structure of the output is
correct and that the output
polygon is very close to the
convex hull. Finally, it is
possible to predict, based on
the input, the precision inthe
number representation
required to solve the problem

Mot van dé khac phat sinh trong
giai doan thuc thi 13, gia thiét thuc
hién sé hoc chinh xac véi cac sb
thue bi pha v, va ching ta can biét
vé nhirng hé qua cta né. Cac bai
toan manh mé thudng giy thit
vong khi thyc thi céc thuat toan
hinh hoc. Giai cac bai toan manh
mé khong dé. Mot giai phap cho
van dé nay la st dung g6i phan
mém cung cap sd hoc chinh xac (sir
dung s6 nguyén, s6 hitu ty, hoic
tham chi sd dai sb, tuy thudc vao
loai bai toan) nhung n6 s& cham.
Ngoai ra, nguoi ta co thé thay doi
cac thudt toan cho phu hop dé phat
hién cac mau thudn va cé nhiing
hanh dong thich hop, tranh lam
héng chuong trinh. Trong trudng
hop nay, chung ta ciing chua thé
dam bao rﬁng thuét toan tao ra dau
ra chinh xéc, va diéu quan trong 13
can phai thiét 1ap dung céac tinh
chat ma dau ra c6. Pay 1a nhiing
cong viéc chung ta da lam trong
phan trude, khi ching ta xay dung
thuat toan bao 16i: két qua co thé
khong phai 1a moét da giac 16i
nhung ching ta biét ring ciu tric
ctia dau ra chinh xac va da giac dau
ra gan nhu 1a bao 16i. Cudi cung,
dua trén dau vao, nd c6 thé dy doan
d6 chinh xac trong biéu dién sb can
thiét dé giai mot bai toan chinh xac.

correctly.

Which approach is best
depends on the application. If
speed is not an issue, exact
arithmetic is preferred. In
other cases it is not so
Important that the result of
the algorithm is precise. For
example, when displaying the
convex hull of a set of points,
it is most likely not noticeable
when the polygon deviates
slightly from the true convex
hull. In this case we can use a
careful implementation based
on floating point arithmetic.

In the rest of this book we
focus on the design phase of
geometric algorithms; we
won’t say much about the
problems that arise in the
implementation phase.

1.3 Application Domains

As indicated before, we have
chosen a motivating example
application for every
geometric concept, algorithm,
or data structure introduced in
this book. Most of the
applications stem from the
areas of computer graphics,
robotics, geographic
information systems, and
CAD/CAM. For those not
familiar with these fields, we

Cach nao 1a tdt nhat con phu thudc
vao tng dung. Néu tbc do khong
phai 13 mot vin d¢, sb hoc chinh
Xac duoc uu tién hon. Trong cac
truong hop khac, nguodi ta khong
qué quan trong muc chinh xac cua
thuat toan. Vi dy, khi hién thj bao
16i ctia mot tap cac diém, viéc da
giac hoi léch so vai bao 16i thuc sy
khong qua quan trong. Trong
truong hop nay, chung ta co thé st
dung mot phwong phap thuc thi can
than dua trén s6 hoc diu chiam
dong.

Trong phan con lai ctia cudn sach
nay, ching t6i tdp trung vao giai
doan thiét ké cac thut toan hinh
hoc, chung ta s& khong dé& cép
nhiéu dén cac van dé phat sinh &
giai doan thuc thi.

1.3 Cac linh vuc tng dung

Nhu da trinh bay trudc day, ching
t6i dd chon mdt vi du c6 tinh chét
dong co cho mdi khai niém hinh
hoc, thuat toan hodc céu trac dir
liéu duoc gioi thi€u trong sach nay.
Hau hét cac ung dung xudt phat tir
cac linh vuc d6 hoa may tinh,
robot, hé thong thong tin dia 1y, va
CAD / CAM. DPéi v6i nhitng nguoi

give a brief description of the
areas and indicate some of the
geometric problems that arise
in them.

Computer graphics. computer
graphics is concerned with
creating images of modeled
scenes for display on a
computer screen, a printer, or
other output device. The
scenes vary from simple two-
dimensional drawings—
consisting of lines, polygons,
and other primitive objects—
to realistic-looking 3-
dimensional scenes including
light sources, textures, and so
on. The latter type of scene
can easily contain over a
million polygons or curved
surface patches.

Because scenes consist of
geometric objects, geometric
algorithms play an important
role in computer graphics.

For 2-dimensional graphics,
typical questions involve the
intersection of certain
primitives, determining the
primitive pointed to with the
mouse, or determining the
subset of primitives that lie
within a particular region.
Chapters 6,10, and 16
describe techniques useful for
some of these problems.

When dealing with 3-

khong quen thudc voi cac linh vuc
nay, ching t6i dua ra mo ta ngin
gon vé cac linh vuc va chi ra mot
sd van dé hinh hoc phat sinh trong
nhitng linh vuc do.

P hoa may tinh. d6 hoa may tinh
c6 lién quan voi viéc tao ra Cac
hinh anh cua cac phong canh duoc
mo hinh héa dé hién thi trén man
hinh mdy tinh, may in, hodc céc
thiét bi dau ra khac. Cac phong
canh c6 thé 1a cac hinh vé hai chiéu
don gian nhu dudng thing, da giac,
va cac doi tuong co ban khac dén
cac phong canh 3 chiéu trong nhu
thue nhu cic ngudn anh sang, két
cAu, va v.v.... Loai phong canh tht
hai ¢6 thé chia trén mot triéu da
giac va cac phan bé mit cong.

Boi vi phong canh bao gdm cac d6i
tuong hinh hoc, cac thuat toan hinh
hoc dong vai trdo quan trong trong
d6 hoa mdy tinh.

Déi v6i dd hoa 2 chiéu, cic van dé
dit ra c6 thé 1a giao cta cac don vi
d6 hoa nao d6, xac dinh cac don vj
dd hoa duoc tré téi véi chudt, hodc
xac dinh tdp hgp con cua cic don
vi d6 hoa nam trong mdt khu vuc
cu thé. Chuong 6,10, va 16 mo ta
c4c k¥ thuat hiru ich cho nhitng van
dé nay.

dimensional problems the
geometric questions become
more complex. A crucial step
in displaying a 3-dimensional
scene is hidden surface
removal: determine the part
of a scene visible from a
particular viewpoint or, in
other words, discard the parts
that lie behind other objects.
In Chapter 12 we study one
approach to this problem.

To create realistic-looking
scenes we have to take light
into account. This creates
many new problems, such as
the computation of shadows.

Hence, realistic image
synthesis requires
complicated display

techniques, like ray tracing
and radiosity. When dealing
with moving objects and in
virtual reality applications, it
IS important to detect
collisions between objects.
All these situations involve
geometric problems.
Robotics. The field of
robotics studies the design
and use of robots. As robots
are geometric objects that
operate in a 3-dimensional
space—the real world—it

IS obvious that geometric

Khi xét cac bai toan ba chiéu, cac
van d& hinh hoc trd nén phirc tap
hon. Mot budc quan trong trong
viéc hién thi mot phong canh 3
chiéu 1a loai bé bé mit an: xac dinh
phan ctia phong canh co thé thay
duge tir mot goc nhin cu thé hay,
no1 cach khac, loai bd cac phﬁn
nam phia sau cac ddi twong khac.
Trong chuong 12, chung ta s¢
nghién ctru mot phuong phap dé
tiép can van dé nay.

Pé tao ra nhiing phong canh giéng
vo1 thuc té, ching ta phai tinh dén
yéu t6 anh sang. Piéu nay lam nay
sinh nhiéu vin dé& mdi, chéng han
nhu tinh toan d6 tdi. Do do, téng
hop hinh anh thuc té doi hoi cac k¥
thuat hién thi phtc tap, nhu do tia
sang va tinh toan su va dap cua anh
sang. Khi xét cac vat thé chuyén
déng va trong cac tng dung thuc té
40, viéc phat hién va cham gitra hai
vat thé rat quan trong. Tét ca nhiing
tinh hubng nay déu lién quan dén
cac bai toan hinh hoc.

Robot. Linh vuc robot hoc nghién
ctru viée thiét ké va sir dung robot.
Vi robot 1a cac dbi tuong hinh hoc
hoat dong trong khong gian 3 chiéu
—thé gii thyc-nén tit nhién s& ¢
nhiéu bai toan hinh hoc nay sinh &
day. Khi bat diu chuong nay,

chiung ta da giéi thi€u bai toan
hoach dinh chuyén dong, trong do
robot phai tim dudng di qua cac vat
can.

In Chapters 13 and 15 we
study some simple cases of
motion planning. Motion
planning is one aspect of the
more general problem of task
planning. One would like to
give a robot high-level
tasks—“vacuum the room”—
and let the robot figure out
the best way to execute the
task. This involves planning
motions, planning the order in
which to perform subtasks,
and so on.

Other geometric problems
occur in the design of robots
and work cells in which the
robot has to operate. Most
industrial robots are robot
arms with a fixed base. The
parts operated on by the robot
arm have to be supplied in
such a way that the robot can
easily grasp them. Some of
the parts may have to be
immobilized so that the robot
can work on them. They may
also have to be turned to a
known orientation before the
robot can work on them.
These are all geometric
problems, sometimes with a
kinematic component. Some
of the algorithms described in
this book are applicable in
such problems. For example,
the smallest enclosing disc

problem, treated in Section
4.7, can be used for optimal
placement of robot arms.

Geographic information
systems. A geographic
information system, or GIS
for short, stores geographical
data like the shape of
countries, the height of
mountains, the course of
rivers, the type of vegetation
at different locations,
population density, or
rainfall. They can also store
human-made structures such
as cities, roads, railways,
electricity lines, or gas pipes.
A GIS can be used to extract
information about certain
regions and, in particular, to
obtain information about the
relation between different
types of data. For example, a
biologist may want to relate
the average rainfall to the
existence of certain plants,
and a civil engineer may need
to query a GIS to determine
whether there are any gas
pipes underneath a lot where
excavation works are to be

performed.
As most geographic
information concerns

properties of points and
regions on the earth’s surface,
geometric problems occur in
abundance here. Moreover,

the amount of data is so large
that efficient algorithms are a
must. Below we mention the
GIS-related problems treated
in this book.

A first question is how to
store geographic data.
Suppose that we want to
develop a car guidance
system, which shows the
driver at any moment where
she is. This requires storing a
huge map of roads and other
data. At every moment we
have to be able to determine
the position of the car on the
map and to quickly select a
small portion of the map for
display on the on-board
computer. Efficient data
structures are needed for
these operations. Chapters 6,
10, and 16 describe
computational geometry
solutions to these problems.
The information about the
height in some mountainous
terrain is usually only
available at certain sample
points. For other positions we
have to obtain the heights by
interpolating between nearby
sample points. But which
sample points should we
choose? Chapter 9 deals with
this problem.

The combination of different
types of data is one of the
most important operations in

a GIS. For example, we may
want to check which houses
lie in a forest, locate all
bridges by checking where
roads cross rivers, or
determine a good location for
a new golf course by finding
a slightly hilly, rather cheap
area not too far from a
particular town. A GIS
usually stores different types
of data in separate maps. To
combine the data we have to
overlay different maps.
Chapter 2 deals with a
problem arising when we
want to compute the overlay.

Finally, we mention the same
example we gave at the
beginning of this chapter: the
location of the nearest public
phone (or hospital, or any
other facility). This requires
the computation of a voronoi
diagram, a structure studied
in detail in Chapter 7.

CAD/CAM. Computer aided
design (CAD) concerns itself
with the design of products
with a computer. The
products can vary from
printed circuit boards,
machine parts, or furniture, to
complete buildings. In all
cases the resulting product is
a geometric entity and, hence,

it is to be expected that all
sorts of geometric problems
appear. Indeed, CAD
packages have to deal with
intersec-tions and unions of
objects, with decomposing
objects and object boundaries
into simpler shapes, and with
visualizing the designed
products.

To decide whether a design
meets the specifications
certain tests are needed. Often
one does not need to build a
prototype for these tests, and
a simulation suffices. Chapter
14 deals with a problem
arising in the simulation of
heat emission by a printed
circuit board.

Once an object has been
designed and tested, it has to
be manufactured. Computer
aided manufacturing (CAM)
packages can be of assistance
here. CAM involves many
geometric problems. Chapter
4 studies one of them.

A recent trend is design for
assembly, where assembly
decisions are already taken
into account during the
design stage. A cad system
supporting this would allow

designers to test their design
for feasibility, answering
questions like: can the
product be built easily using a
certain manufacturing
process? Many of these
guestions require geometric
algorithms to be answered.
Other applications domains.
There are many more
application domains where
geometric problems occur
and geometric algorithms and
data structures can be used to
solve them.

For example, in molecular
modeling, molecules are
often represented by
collections of intersecting
balls in space, one ball for
each atom. Typical questions
are to compute the union of
the atom balls to obtain the
molecule surface, or to
compute where two
molecules can touch each
other.

Another area is pattern
recognition. Consider for
example an optical character
recognition system. Such a
system scans a paper with
text on it with the goal of
recognizing the text
characters. A basic step is to
match the 1image of a
character against a collection
of stored characters to find
the one that best fits it. This

leads to a geometric problem:
given two geometric objects,
determine how well they
resemble each other.

Even certain areas that at first
sight do not seem to be
geometric can benefit from
geometric algorithms,
because it is often possible to
formulate non- 12 geometric
problem in geometric terms.
In Chapter 5, for instance, we
will see how records in a
database can be interpreted as
points in a higher-
dimensional space, and we
will present a geometric data
structure such that certain
queries on the records can be
answered efficiently.

We hope that the above
collection of geometric
problems makes it clear that
computational geometry
plays a role in many different
areas of computer science.
The algorithms, data
structures, and techniques
described in this book will
provide you with the tools
needed to attack such
geometric problems
successfully.

1.4 Notes and Comments

Every chapter of this book
ends with a section entitled

Notes and Comments.

These sections indicate where
the results described in the
chapter came from, indicate
generalizations and
Improvements, and provide
references. They can be
skipped but do contain useful
material for those who want
to know more about the topic
of the chapter. More
information can also be found
in the Handbook of
Computational Geometry
[331] and the Handbook of
Discrete and Computational
Geometry [191].

In this chapter the geometric
problem treated in detail was
the computation of the
convex hull of a set of points
in the plane. This is a classic
topic in computational
geometry and the amount of
literature about it is huge. The
algorithm described in this
chapter is commonly known
as Graham's scan, and is
based on a modification by
Andrew [17] of one of the
earliest algorithms by
Graham [192]. This is only
one of the many O(nlogn)
algorithms available for
solving the problem. A
divide-and-conquer approach
was given by preparata and
Hong [322]. Also an
incremental method exists

that inserts the points one by
one in O(logn) time per
insertion [321]. Overmars and
van Leeuwen generalized this
to a method in which points
could be both inserted and
deleted in O(log2 n) time
[305]. Other results on
dynamic convex hulls were
obtained by Hershberger and
Suri [211], Chan [83], and
Brodal and Jacob [73].

Even though an Q(nlogn)
lower bound is known for the
problem [393] many authors
have tried to improve the
result. This makes sense
because in many applications
the number of points that
appear on the convex hull is
relatively small, while the
lower bound result assumes
that (almost) all points show
up on the convex hull. Hence,
it is useful to look at
algorithms whose running
time depends on the
complexity of the convex
hull. Jarvis [221] introduced a
wrapping technique, often
referred to as Jarvis’s march,
that computes the convex hull
in O(h ¢ n) time where h is
the complexity of the convex
hull. The same worst-case
performance is achieved by
the algorithm of Overmars
and van Leeuwen [303],
based on earlier work by

Bykat [79], Eddy [156], and
Green and Silverman [193].
This algorithm has the
advantage that its expected
running time is linear for
many distributions of points.
Finally, Kirkpatrick and
Seidel [238] improved the
result to O(nlogh), and
recently Chan [82] discovered
a much simpler algorithm to
achieve the same result.

The convex hull can be
defined in any dimension.
Convex hulls in 3-
dimensional space can still be
computed in O(nlogn) time,
as we will see in Chapter 11.
For dimensions higher than 3,
however, the complexity of
the convex hull is no longer
linear in the number of
points. See the notes and
comments of Chapter 11 for
more details.

In the past years a number of
general methods for handling
special cases have been
suggested. These symbolic
perturbation schemes perturb
the input in such a way that
all degeneracies disappear.
However, the perturbation is
only done symbolically. This
technique was introduced by
Edelsbrunner and Mucke
[164] and later refined by
Yap [397] and Emiris and
Canny [172, 171]. Symbolic

perturbation relieves the
programmer of the burden of
degeneracies, but it has some
drawbacks: the use of a
symbolic perturbation library
slows down the algorithm,
and sometimes one needs to
recover the “real result” from
the “perturbed result”, which
IS not always easy. These
drawbacks led Burnikel et al.
[78] to claim that it is both
simpler (in terms of
programming effort) and
more efficient (in terms of
running time) to deal directly
with degenerate inputs.

Robustness in geometric
algorithms is a topic that has
recently received a lot of
interest. Most geometric
comparisons can be
formulated as computing the
sign of some determinant. A
possible way to deal with the
inexactness in floating point
arithmetic when evaluating
this sign is to choose a small
threshold value e and to say
that the determinant is zero
when the outcome of the
floating point computation is
less than e. When
implemented naively, this can
lead to inconsistencies (for
instance, for three points a, b,
c we may decide that a = b
and b = ¢ but a = c) that cause

the program to fail. Guibas et
al. [198] showed that
combining such an approach
with interval arithmetic and
backwards error analysis can
give robust algorithms.
Another option is to use exact
arithmetic. Here one
computes as many bits of the
determinant as are needed to
determine its sign. This will
slow down the computation,
but techniques have been
developed to keep the
performance penalty
relatively small [182, 256,
395]. Besides these general
approaches, there have been a
number papers dealing with
robust computation in
specific problems [34, 37, 81,
145, 180, 181, 219, 279].

We gave a brief overview of
the application domains from
which we took our examples,
which serve to show the
motivation behind the various
geometric notions and
algorithms studied in this
book. Below are some
references to textbooks you
can consult if you want to
know more about the
application domains. Of
course there are many more
good books about these
domains than the few we
mention.

There is a large number of
books on computer graphics.

The book by Foley et al.
[179] is very extensive and
generally considered one of
the best books on the topic.
Other good books are the
ones by Shirley et al. [359]
and Watt [381].

An extensive overview of
robotics and the motion
planning problem can be
found in the book of Choset
et al. [127], and in the
somewhat older books of
Latombe [243] and Hopcroft,
Schwartz, and Sharir [217].
More information on
geometric aspects of robotics
is provided by the book of
Selig [348].

There is a large collection of
books about geographic
information systems, but
most of them do not consider
algorithmic issues in much
detail. Some general
textbooks are the ones by
DeMers [140], Longley et al.
[257], and Worboys and
Duckham [392]. Data
structures for spatial data are
described extensively in the
book of Samet [335].

The books by Faux and Pratt
[175], Mortenson [285], and
Hoffmann [216] are good
introductory texts on
CAD/CAM and geometric
modeling.

1.5 Exercises

1.1 The convex hull of a
set S is defined to be the
intersection of all convex sets
that contain S. For the convex
hull of a set of points it was
indicated that the convex hull
Is the convex set with
smallest perimeter. We want
to show that these are
equivalent definitions.

a. prove that the
intersection of two convex
sets is again convex. This
implies that the intersection
of a finite family of convex
sets is convex as well.

b. Prove that the smallest
perimeter polygon P
containing a set of points P is
convex.

C. Prove that any convex
set containing the set of
points P contains the smallest
perimeter polygon P.

1.2 Let P be a set of points
in the plane. Let P be the
convex polygon whose
vertices are points from P and
that contains all points in P.
prove that this polygon P is
uniquely defined, and that it
Is the intersection of all
convex sets containing P.

1.3 Let E be an unsorted
set of n segments that are the
edges of a convex polygon.
Describe an O(nlog n)
algorithm that computes from
E a list containing all vertices

of the polygon, sorted in
clockwise order.

1.4 For the convex hull
algorithm we have to be able
to test whether a point r lies
left or right of the directed
line through two points p and
g. Let

p =(Px,Py), d =(ax, qy), and r
=(rx, ry).

a. Show that the sign of
the determinant

determines whether r lies left
or right of the line.

b. Show that |D| in fact is
twice the surface of the
triangle determined by p, q,
and r.

C. Why is this an
attractive way to implement
the basic test in algorithm
CONVEXHULL? Give an
argument for both integer and
floating point coordinates.

1.5 Verify that the
algorithm CONVEXHULL
with the indicated
modifications correctly
computes the convex hull,
also of degenerate sets of
points. Consider for example
such nasty cases as a set of
points that all lie on one
(vertical) line.

1.6 In many situations we
need to compute convex hulls
of objects other than points.

a. Let S be a set of n line
segments in the plane. Prove
that the convex hull of S is

exactly the same as the
convex hull of the 2n
endpoints of the segments.

b. *Let P be a non-convex
polygon. Describe an
algorithm that computes the
convex hull of P in O(n) time.
Hint: Use a variant of
algorithm ConvexHull where
the vertices are not treated in
lexicographical order, but in
some other order.

1.7 Consider the following
alternative approach to
computing the convex hull of
a set of points in the plane:
We start with the rightmost
point. This is the first point
pl of the convex hull. Now
Imagine that we start with a
vertical line and rotate it
clockwise until it hits another
point p2. This is the second
point on the convex hull. We
continue rotating the line but
this time around p2 until we
hit a point p3. In this way we
continue until we reach pl
again.

a. Give pseudocode for
this algorithm.

b. What degenerate cases
can occur and how can we
deal with them?

C. Prove that the
algorithm correctly computes
the convex hull.

d. Prove that the
algorithm can be
implemented to run in time

O(n * h), where h is the
complexity of the convex
hull.

e. What problems might
occur when we deal with
inexact floating point
arithmetic?

1.8 The O(nlog n)
algorithm to compute the
convex hull of a set of n
points in the plane that was
described in this chapter is
based on the paradigm of
incremental construction: add
the points one by one, and
update the convex hull after
each addition. In this exercise
we shall develop an algorithm
based on another paradigm,
namely divide-and-conquer.

a. Let P1 and P2 be two
disjoint convex polygons with
n vertices in total. Give an
O(n) time algorithm that
computes the convex hull of
P1uP2.

b. Use the algorithm from
part a to develop an O(nlog n)
time divide-and- conquer
algorithm to compute the
convex hull of a set of n
points in the plane.

1.9 Suppose that we have a
subroutine ConvexHull
available for comput-ing the
convex hull of a set of points
in the plane. Its output is a list
of convex hull vertices, sorted
in clockwise order. Now let S
= {x1, x2,....xn} be a set of n

numbers. Show that S can be
sorted in O(n) time plus the
time needed for one call to
ConvexHull. ~ Since the
sorting problem has an
Q.(nlogn) lower bound, this
implies that the convex hull
problem

has an fi(nlogn) lower bound
as well. Hence, the algorithm
presented in Section 1.5 this
chapter is asymptotically
optimal. EXERCISES
1.10 Let S be a set of n
(possibly intersecting) unit
circles in the plane. We

want to compute the convex
hull of S.

a. Show that the
boundary of the convex hull
of S consists of straight line
segments and pieces of
circlesin S.

b. Show that each circle
can occur at most once on the
boundary of the convex hull.
C. Let S' be the set of
points that are the centers of
the circles in S. Show that a
circle in S appears on the
boundary of the convex hull
iIf and only if the center of the
circle lies on the convex hull
of S'.

d. Give an O(nlog n)
algorithm for computing the
convex hull of S.

e. *Give an O(nlogn)
algorithm for the case in
which the circles in S have

different radii.

2 Line Segment
Intersection
Thematic Map Overlay

When you are visiting a
country, maps are an
invaluable source of
information. They tell you
where tourist attractions are
located, they indicate the
roads and railway lines to get

there, they show small lakes,
and so on. Unfortunately,
they can also be a source of
frustration, as it is often
difficult to find the right
information: even when you
know the approximate
position of a small town, it
can still be difficult to spot it
on the map. To make maps
more readable, geographic
information systems split
them into several layers. Each
layer is a thematic map, that
Is, it stores only one type of
information. Thus there will
be a layer storing the roads, a
layer storing the cities, a layer
storing the rivers, and so on.
The theme of a layer can also
be more abstract. For
instance, there could be a
layer for the population
density, for average
precipitation, habitat of the
grizzly bear, or for
vegetation. The type of
geometric information stored
in a layer can be very
different: the layer for a road
map could store the roads as
collections of line segments
(or curves, perhaps), the layer
for cities could contain points
labeled with city names, and
the layer for vegetation could
store a subdivision of the map
into regions labeled with the
type of vegetation.

Users of a geographic

information system can select
one of the thematic maps for
display. To find a small town
you would select the layer
storing cities, and you would
not be distracted by
information such as the
names of rivers and lakes.
After you have spotted the
town, you probably want to
know how to get there. To
this end geographic
information systems allow
users to view an overlay of
several maps—see Figure 2.1.
Using an overlay of the road
map and the map storing
cities you can now figure out
how to get to the town. When
two or more thematic map
layers are shown together,
intersections in the overlay
are positions of special
interest. For example, when
viewing the overlay of the
layer for the roads and the
layer for the rivers, it would
be useful if the intersections
were clearly marked. In this
example the two maps are
basically networks, and the
Intersections are points. In
other cases one is interested
in the intersection of
complete regions. For
instance, geographers
studying the climate could be
interested in finding regions
where there is pine forest and
the annual precipitation is

between 1000 mm and 1500
mm. These regions are the
intersections of the regions
labeled “pine forest” in the
vegetation map and the
regions labeled “1000-1500”
In the precipitation map.

2.1 Line Segment
Intersection

We first study the simplest
form of the map overlay
problem, where the two map
layers are networks
represented as collections of
line segments. For example, a
map layer storing roads,
railroads, or rivers at a small
scale. Note that curves can be
approximated by a number of
small segments. At first we
won’t be interested in the
regions induced by these line
segments. Later we shall look
at the more complex situation
where the maps are not just
networks, but subdivisions of
the plane into regions that
have an explicit meaning. To
solve the network overlay
problem we first have to state
it in @ geometric setting.

For the overlay of two
networks the geometric
situation is the following:
given two sets of line
segments, compute all
intersections between a

segment from one set and a
segment from the other. This
problem specification is not
quite precise enough yet, as
we didn’t define when two
segments intersect. In
particular, do two segments
intersect when an endpoint of
one of them lies on the other?
In other words, we have to
specify whether the input
segments are open or closed.
To make this decision we
should go back to the
application, the network
overlay problem. Roads in a
road map and rivers in a river
map are represented by
chains of segments, so a
crossing of a road and a river
corresponds to the interior of
one chain intersecting the
interior of another chain. This
does not mean that there is
an intersection between the
interior of two segments: the
intersection point could
happen to coincide with an
endpoint of a segment of a
chain. In fact, this situation is
not uncommon because
windy rivers are represented
by many small segments and
coordinates of endpoints may
have been rounded when
maps are digitized. We
conclude that we should
define the segments to be
closed, so that an endpoint of
one segment lying on another

segment counts as an
intersection.

To simplify the description
somewhat we shall put the
segments from the two sets
into one set, and compute all
Intersections among the
segments in that set. This way
we certainly find all the
Intersections we want. We
may also find intersections
between segments from the
same set. Actually, we
certainly will, because in our
application the segments from
one set form a number of
chains, and we count
coinciding endpoints as
intersections. These other
intersections can be filtered
out afterwards by simply
checking for each reported
intersection whether the two
segments involved belong to
the same set. So our problem
specification is as follows:
given a set S of n closed
segments in the plane, report
all intersection points among
the segments in S.

This doesn’t seem like a
challenging problem: we can
simply take each pair of
segments, compute whether
they intersect, and, if so,
report their intersection point.

This brute-force algorithm
clearly requires O(n2) time.
In a sense this is optimal:
when each pair of segments
intersects any algorithm must
take Q(n2) time, because it
has to report all intersections.

A similar example can be
given when the overlay of
two networks is considered.
In practical situations,
however, most segments
intersect no or only a few
other segments, so the total
number of intersection points
IS much smaller than
quadratic. It would be nice to
have an algorithm that is
faster in such situations. In
other words, we want an
algorithm whose running time
depends not only on the
number of segments in the
input, but also on the number
of intersection points. Such
an algorithm is called an
output-sensitive algorithm:
the running time of the
algorithm is sensitive to the
size of the output. We could
also call such an algorithm
intersection-sensitive, since
the number of intersections is
what determines the size of
the output.

How can we avoid testing all
pairs of segments for

intersection? Here we must
make use of the geometry of
the situation: segments that
are close together are
candidates for intersection,
unlike segments that are far
apart. Below we shall see
how we can use this
observation to obtain an
output-sensitive algorithm for
the line segment intersection
problem.

Let S := {s1, s2,...,sn} be the
set of segments for which we
want to compute all
intersections. We want to
avoid testing pairs of
segments that are far apart.
But how can we do this?
Let’s first try to rule out an
easy case. Define the y-
interval of a segment to be its
orthogonal projection onto
the y-axis. When the y-
intervals of a pair of segments
do not overlap—we could say
that they are far apart in the
y-direction—then they cannot
intersect. Hence, we only
need to test pairs of segments
whose y-intervals overlap,
that is, pairs for which there
exists a horizontal line that
intersects both segments. To
find these pairs we imagine
sweeping a line | downwards
over the plane, starting from a
position above all segments.
While we sweep the

imaginary line, we keep track
of all segments intersecting
it—the details of this will be
explained later—so that we
can find the pairs we need.

This type of algorithm is
called a plane sweep
algorithm and the line I is
called the sweep line. The
status of the sweep line is the
set of segments intersecting
it. The status changes while
the sweep line moves
downwards, but not
continuously. Only at
particular points is an update
of the status required. We call
these points the event points
of the plane sweep algorithm.
In this algorithm the event
points are the endpoints of the
segments.

The moments at which the
sweep line reaches an event
point are the only moments
when the algorithm actually
does something: it updates
the status of the sweep line
and performs some
intersection tests. In
particular, if the event point is
the upper endpoint of a
segment, then a new segment
starts intersecting the sweep

line and must be added to the
status. This segment is tested
for intersection against the
ones already intersecting the
sweep line. If the event point
Is a lower endpoint, a
segment stops intersecting the
sweep line and must be
deleted from the status. This
way we only test pairs of
segments for which there is a
horizontal line that intersects
both segments.
Unfortunately, this is not
enough: there are still
situations where we test a
quadratic number of pairs,
whereas there is only a small
number of intersection points.
A simple example is a set of
vertical segments that all
intersect the X-axis. So the
algorithm is not output-
sensitive. The problem is that
two segments that intersect
the sweep line can still be far
apart in the horizontal
direction.

Let’s order the segments from
left to right as they intersect
the sweep line, to include the
idea of being close in the
horizontal direction. We shall
only test segments when they
are adjacent in the horizontal
ordering. This means that we
only test any new segment
against two segments,
namely, the ones immediately
left and right of the upper

endpoint. Later, when the
sweep line has moved
downwards to another
position, a segment can
become adjacent to other
segments against which it
will be tested. Our new
strategy should be reflected in
the status of our algorithm:
the status now corresponds to
the ordered sequence of
segments intersecting the
sweep line. The new status
not only changes at endpoints
of segments; it also changes
at intersection points, where
the order of the intersected
segments changes. When this
happens we must test the two
segments that change position
against their new neighbors.
This is a new type of event
point.

Before trying to turn these
ideas into an efficient
algorithm, we should
convince ourselves that the
approach is correct. We have
reduced the number of pairs
to be tested, but do we still
find all intersections? In other
words, if two segments si and
sj intersect, is there always a
position of the sweep line |
where si and sj are adjacent
along 1?

Let’s first ignore some nasty
cases. assume that no
segment is horizontal, that

any two segments intersect in
at most one point—they do
not overlap—, and that no
three segments meet in a
common point. Later we shall
see that these cases are easy
to handle, but for now it is
convenient to forget about
them. The intersections where
an endpoint of a segment lies
on another segment can easily
be detected when the sweep
line reaches the endpoint. So
the only question is whether
intersections between the
interiors of segments are
always detected.

Lemma 2.1 Let si and Sj be
two non-horizontal segments
whose interiors intersect in a
single point p, and assume
there is no third segment
passing through p. Then there
IS an event point above p
where si and Sj become
adjacent and are tested for
intersection.

Proof. Let | be a horizontal
line slightly above p. If | is
close enough to p then si and
S} must be adjacent along I.
(To be precise, we should
take | such that there is no
event point on I, nor in
between | and the horizontal
line through p.) In other
words, there is a position of
the sweep line where si and

Sj are adjacent. On the other
hand, si and Sj are not yet
adjacent when the algorithm
starts, because the sweep line
starts above all line segments
and the status is empty.
Hence, there must be an event
point g where Si and Sj
become adjacent and are
tested for intersection. O
So our approach is correct, at
least when we forget about
the nasty cases mentioned
earlier. Now we can proceed
with the development of the
plane sweep algorithm. Let’s
briefly recap the overall
approach. We imagine
moving a horizontal sweep
line 1 downwards over the
plane. The sweep line halts at
certain event points; in our
case these are the endpoints
of the segments, which we
know beforehand, and the
intersection points, which are
computed on the fly. While
the sweep line moves we
maintain the ordered
sequence of segments
intersected by it. When the
sweep line halts at an event
point the sequence of
segments changes and,
depending on the type of
event point, we have to take
several actions to update the
status and detect
intersections.

When the event point is the

upper endpoint of a segment,
there is a new segment
intersecting the sweep line.
This segment must be tested
for intersection against its
two neighbors along the
sweep line. Only intersection
points below the sweep line
are important; the ones above
the sweep line have been
detected already. For
example, if segments Si and
Sk are adjacent on the sweep
line, and a new upper
endpoint of a segment Sj
appears in between, then we
have to test Sj for intersection
with Si and Sk. If we find an
intersection below the sweep
line, we have found a new
event point. After the upper
endpoint is handled we
continue to the next event

point.
When the event point is an
intersection, the two

segments that intersect
change their order. Each of
them gets (at most) one new
neighbor against which it is
tested for intersection. Again,
only intersections below the
sweep line are still
Interesting. Suppose that four
segments Sj, Sk, SlI, and Sm
appear in this order on the
sweep line when the
intersection point of Sk and
Sl is reached. Then Sk and SI
switch position and we must

test Sl and Sj for intersection
below the sweep line, and
also Sk and Sm. The new
intersections that we find are,
of course, also event points
for the algorithm. Note,
however, that it is possible
that these events have already
been detected earlier, namely
if a pair becoming adjacent
has been adjacent before.

When the event point is the
lower endpoint of a segment,
its two neighbors now
become adjacent and must be
tested for intersection. If they
intersect below the sweep
line, then their intersection
point is an event point.
(Again, this event could have
been detected already.)
Assume three segments sk, sl,
and sm appear in this order
on the sweep line when the
lower endpoint of sl is
encountered. Then sk and sm
will become adjacent and we
test them for intersection.

After we have swept the
whole plane—more precisely,
after we have treated the last
event point—we have
computed all intersection
points. This is guaranteed by
the following invariant,
which holds at any time
during the plane sweep: all
intersection points above the
sweep line have been

computed correctly.

After this sketch of the
algorithm, it’s time to go into
more detail. It’s also time to
look at the degenerate cases
that can arise, like three or
more segments meeting in a
point. We should first specify
what we expect from the
algorithm in these cases.

We could require the
algorithm to simply report
each intersection point once,
but it seems more useful if it
reports for each intersection
point a list of segments that
pass through it or have it as
an endpoint. There is another
special case for which we
should define the required
output more carefully,
namely that of two partially
overlapping segments, but for
simplicity we shall ignore this
case in the rest of this section.
We start by describing the
data structures the algorithm
uses.

First of all we need a data
structure—called the event
gueue—that stores the events.
We denote the event queue by

Q.

We need an operation that
removes the next event that
will occur from Q, and

returns it so that it can be
treated. This event is the
highest event below the
sweep line. If two event
points have the same y-
coordinate, then the one with
smaller X-coordinate will be
returned. In other words,
event points on the same
horizontal line are treated
from left to right. This
implies that we should
consider the left endpoint of a
horizontal segment to be its
upper endpoint, and its right
endpoint to be its lower
endpoint. You can also think
about our convention as
follows: instead of having a
horizontal sweep line,
imagine it is sloping just a
tiny bit upward. As a result
the sweep line reaches the left
endpoint of a horizontal
segment just before reaching
the right endpoint. The event
queue must allow insertions,
because new events will be
computed on the fly. Notice
that two event points can
coincide. For example, the
upper endpoints of two
distinct segments may
coincide. It is convenient to
treat this as one event point.
Hence, an insertion must be
able to check whether an
event is already present in Q.

We implement the event

queue as follows. Define an
order -< on the event points
that represents the order in
which they will be handled.
Hence, if p and g are two
event points then we have p -
< ¢ if and only if py > qy
holds or py = qy and pX < gX
holds. We store the event
points in a balanced binary
search tree, ordered according
to -< With each event point p
in Q we will store the
segments starting at p, that is,
the segments whose upper
endpoint is p. This
information will be needed to
handle the event. Both
operations—fetching the next
event24 and inserting an
event—take O(log m) time,
where m is the number of
events

in Q. (We do not use a heap
to implement the event queue,
because we have to be able to
test whether a given event is
already present in Q.)

Second, we need to maintain
the status of the algorithm.
This is the ordered sequence
of segments intersecting the
sweep line. The status
structure, denoted by T, is
used to access the neighbors
of a given segment S, so that
they can be tested for
intersection with S. The status
structure must be dynamic: as

segments start or stop to
intersect the sweep line, they
must be inserted into or
deleted from the structure.
Because there is a well-
defined order on the segments
In the status structure we can
use a balanced binary search
tree as status structure. When
you are only used to binary
search trees that store
numbers, this may be
surprising. But binary search
trees can store any set of
elements, as long as there is
an order on the elements.

In more detail, we store the
segments intersecting the
sweep line ordered in the
leaves of a balanced binary
search tree T. The left-to-
right order of the segments
along the sweep line
corresponds to the left-to-
right order of the leaves in T.
We must also store
information in the internal
nodes to guide the search
down the tree to the leaves.
At each internal node, we
store the segment from the
rightmost leaf in its left
subtree. (Alternatively, we
could store the segments only
in interior nodes. This will
save some storage. However,

it is conceptually simpler to
think about the segments in
interior nodes as values to
guide the search, not as data
items. Storing the segments in
the leaves also makes some
algorithms simpler to
describe.) Suppose we search
in T for the segment
immediately to the left of
some point p that lies on the
sweep line. At each internal
node V we test whether p lies
left or right of the segment
stored at V. Depending on the
outcome we descend to the
left or right subtree of V,
eventually ending up in a
leaf. Either this leaf, or the
leaf immediately to the left of
it, stores the segment we are
searching for. In a similar
way we can find the segment
immediately to the right of p,
or the segments containing p.
It follows that each update
and neighbor search operation
takes O(log n) time.

The event queue Q and the
status structure T are the only
two data structures we need.
The global algorithm can now
be described as follows.

Algorithm
FINDINTERSECTIONS(S)

Input. A set S of line
segments in the plane.

Output. The set of
Intersection points among the
segments in S, with for each
intersection point the
segments that contain it.

1. Initialize an empty event
gueue Q. Next, insert the
segment endpoints into Q;
when an upper endpoint is
inserted, the corresponding
segment should be stored
with it.

2. Initialize an empty
status structure T.

3. while Q is not empty

4. do Determine the next
event point p in Q and delete
it.
5.

HANDLEEVENTPOI
NT(P)
We have already seen how
events are handled: at
endpoints of segments we
have to insert or delete
segments from the status
structure T, and at
intersection points we have to
change the order of two
segments. In both cases we
also have to do intersection
tests between segments that
become neighbors after the

event. In degenerate cases—
where several segments are
involved in one event point—
the details are a little bit more
tricky. The next procedure
describes how to handle event
points correctly; it s
illustrated in Figure 2.2.

Figure 2.2

An event point and the
changes in the status structure
HANDLEEVENTPOINT(p)

1. Let U(p) be the set of
segments ~ whose upper
endpoint is p; these segments
are stored with the event
point p. (For horizontal
segments, the upper endpoint
is by definition the left
endpoint.)

2. Find all segments
stored in T that contain p;
they are adjacent in T. Let
L(p) denote the subset of
segments found whose lower
endpoint is p, and let C(p)
denote the subset of segments
found that contain p in their
interior.

3. if L(p) u U(p) u C(p)
contains more than one
segment

4, then Report p as an
intersection, together with

L(p), U(p), and C(p).

5. Delete the segments in
L(p) u C(p) from T.

6. Insert the segments in
U(p) u C(p) into T. The order
of the segments in T should
correspond to the order in
which they are intersected by
a sweep line just below p. If
there is a horizontal segment,
it comes last among all
segments containing p.

7. Deleting and re-inserting
the segments of C(p) reverses
their order. *)

8. ifU(p)uC(p)=0

9. then Let sl and sr be
the left and right neighbors of
pinT.

10. findNewEvent(s , sr, p)

11. else Let s be the
leftmost segment of U(p) u
C(p)inT.

12. Let sl be the left
neighbor of s"in T.

13. FindNewEvent(sl , s,
p)

14. Let s" be the rightmost
segment of U(p) uC(p) in T.
15. Let sr be the right
neighbor of s" in T.

16. FindNewEvent(s", sr,
p)

Note that in lines 8-16 we
assume that sl and sr actually
exist. If they do not exist the
corresponding steps should
obviously not be performed.

The procedures for finding
the new intersections are
easy: they simply test two
segments for intersection.
The only thing we need to be
careful about is, when we
find an intersection, whether
this intersection has already
been handled earlier or not.
When there are no horizontal
segments, then the
intersection has not been
handled yet when the
intersection point lies below
the sweep line. But how
should we deal with
horizontal segments? Recall
our convention that events
with the same y-coordinate
are treated from left to right.
This implies that we are still
interested in intersection
points lying to the right of the
current event point. Hence,
the procedure FindNewEvent
Is defined as follows.
FindNewEvent(sl, sr, p)

1. if sl and sr intersect
below the sweep line, or on it
and to the right of the current
event point p, and the
intersection is not yet present

as aneventin Q

2. then Insert the
intersection point as an event
into Q.

What about the correctness of
our algorithm? It is clear that
FINDINTERSEC- TIONS
only reports true intersection
points, but does it find all of
them? The next lemma states
that this is indeed the case.

Lemma 2.2 Algorithm
FindIntersections computes
all intersection points and the
segments that contain it
correctly.

Proof. Recall that the priority
of an event is given by its y-
coordinate, and that when two
events have the same y-
coordinate the one with
smaller x-coordinate is given
higher priority. We shall
prove the lemma by induction
on the priority of the event
points.

Let p be an intersection point
and assume that all
Intersection points g with a
higher priority have been
computed correctly. We shall
prove that p and the segments
that contain p are computed
correctly. Let U (p) be the set
of segments that have p as
their upper endpoint (or, for

horizontal segments, their left
endpoint), let L(p) be the set
of segments having p as their
lower endpoint (or, for
horizontal segments, their
right endpoint), and let C(p)
be the set of segments having
p in their interior.

First, assume that p is an
endpoint of one or more of
the segments. In that case p is
stored in the event queue Q at
the start of the algorithm. The
segments from U (p) are
stored with p, so they will be
found. The segments from L(
p) and C(p) are stored in T
when p is handled, so they
will be found in line 2 of
HandleEventPoint. Hence, p
and all the segments involved
are determined correctly
when p is an endpoint of one
or more of the segments.

Now assume that p is not an
endpoint of a segment. All we
need to show is that p will be
inserted into Q at some
moment. Note that all
segments that are involved
have p in their interior. Order
these segments by angle
around p, and let si and Sj be
two neighboring segments.
Following the proof of
Lemma 2.1 we see that there

IS an event point with a
higher priority than p such
that Si and Sj become
adjacent when ¢ is passed.

In Lemma 2.1 we assumed
for simplicity that si and Sj
are non-horizontal, but it is
straightforward to adapt the
proof for horizontal
segments. By induction, the
event point g was handled
correctly, which means that p
is detected and stored into Q.

So we have a correct
algorithm. But did we
succeed in developing an
output- sensitive algorithm?
The answer is vyes: the
running time of the algorithm
Is O((n + k) log n), where k is
the size of the output. The
following lemma states an
even stronger result: the
running time is O((n
+1)logn), where 1 is the
number of intersections. This
Is stronger, because for one
Intersection point the output
can consist of a large number
of segments, namely in the
case where many segments
intersect in a common point.

Lemma 2.3 The running time
of Algorithm
FindIntersections for a set S
of n line segments in the
plane is O(n log n +1 log n),

where | is the number of
intersection points of
segments in S.

Proof. The algorithm starts by
constructing the event queue
on the segment endpoints.
Because we implemented the
event queue as a balanced
binary search tree, this takes
O(nlogn) time. Initializing the
status structure takes constant
time. Then the plane sweep
starts and all the events are
handled. To handle an event
we perform three operations
on the event queue Q: the
event itself is deleted from Q
in line 4 of FindlIntersections,
and there can be one or two
calls to FindNewEvent,
which may cause at most two
new events to be inserted into
Q. Deletions and insertions
on Q take O(logn) time each.
We also perform
operations—insertions,
deletions, and neighbor
finding—on the status
structure T, which take O(log
n) time each. The number of
operations is linear in the
number m(p) := card(L(p) u
U(p) u C(p)) of segments that
are involved in the event. If
we denote the sum of all
m(p), over all event points p,
by m, the running time of the
algorithm is O(m log n).

It is clear that m = O(n + k),
where k is the size of the
output; after all, whenever
m(p) > 1 we report all
segments involved in the
event, and the only events
involving one segment are the
endpoints of segments. But
we want to prove that m =
O(n +1), where 1 is the
number of intersection points.
To show this, we will
interpret the set of segments
as a planar graph embedded
in the plane. (If you are not
familiar with planar graph
terminology, you should read
the first paragraphs of Section
2.2 first.) Its vertices are the
endpoints of segments and
intersection points of
segments, and its edges are
the pieces of the segments
connecting vertices. Consider
an event point p. It is a vertex
of the graph, and m(p) is
bounded by the degree of the
vertex. Consequently, m is
bounded by the sum of the
degrees of all vertices of our
graph. Every edge of the
graph contributes one to the
degree of exactly two vertices
(its endpoints), so m s
bounded by 2ne, where ne is
the number of edges of the
graph. Let’s bound ne in
terms of n and |. By

definition, nv, the number of
vertices, is at most 2n +1. It is
well known that in planar
graphs ne = O(nv), which
proves our claim. But, for
completeness, let us give the
argument here. Every face of
the planar graph is bounded
by at least three edges—
provided that there are at least
three segments—and an edge
can bound at most two
different faces. Therefore nf,
the number of faces, is at
most 2ne/3. We now use
Euler’s formula, which states
that for any planar graph with
nv vertices, ne edges, and nf
faces, the following relation
holds:

nv—ne + nf> 2.

Equality holds if and only if
the graph is connected.
Plugging the bounds on nv
and nf into this formula, we
get

Sone<6n+3l—6,and m<
12n + 61 — 12, and the bound
on the running time

follows.

We still have to analyze the
other complexity aspect, the
amount of storage used by the
algorithm. The tree T stores a
segment at most once, so it
uses O(n) storage. The size of
Q can be larger, however.

The algorithm inserts
Intersection points in Q when
they are detected and it
removes them when they are
handled. when it takes a long
time before intersections are
handled, it could happen that
Q gets very large. Of course
its size is always bounded by
O(n+1), but it would be better
If the working storage were
always linear.

There is a relatively simple
way to achieve this: only
store intersection points of
pairs of segments that are
currently adjacent on the
sweep line. The algorithm
given above also stores
intersection points of
segments that have been
horizontally adjacent, but
aren’t anymore. By storing
only intersections among
adjacent segments, the
number of event points in Q
Is never more than linear. The
modification required in the
algorithm is that the
intersection point of two
segments must be deleted
when they stop being
adjacent. These segments
must become adjacent again
before the intersection point
Is reached, so the intersection
point will still be reported
correctly. The total time taken
by the algorithm remains O(n
log n +1 log n). We obtain the
following theorem:

Theorem 2.4 Let S be a set of
n line segments in the plane.
All intersection points in S,
with for each intersection
point the segments involved
in it, can be reportedin
O(nlogn + llogn) time and
O(n) space, where | is the
number of intersection points.

2.2 The Doubly-Connected

Edge List

we have solved the easiest
case of the map overlay
problem, where the two maps
are networks represented as
collections of line segments.
In general, maps have a more
complicated structure: they
are subdivisions of the plane
into labeled regions. A
thematic map of forests in
Canada, for instance, would
be a subdivision of Canada
into regions with labels such
as “pine”, “deciduous”,
“birch”, and “mixed”.

Before we can give an
algorithm for computing the
overlay of two subdivisions,
we must develop a suitable
representation for a
subdivision. Storing a
subdivision as a collection of
line segments is not such a
good idea. Operations like
reporting the boundary of a
region would be rather
complicated. It is better
Figure 2.3 Types of forest in
Canada

to incorporate structural,
topological information:
which segments bound a
given region, which regions
are adjacent, and so on.

The maps we consider are

planar subdivisions induced
by planar embeddings of
graphs. Such a subdivision is
connected if the underlying
graph is connected. The
embedding of a node of the
graph is called a vertex, and
the embedding of an arc is
called an edge. We only
consider embeddings where
every edge is a straight line
segment. In principle, edges
In a subdivision need not be
straight. A subdivision need
not even be a planar
embedding of a graph, as it
may have unbounded edges.
In this section, however, we
don’t consider such more
general subdivisions. We
consider an edge to be open,
that is, its endpoints—which
are vertices of the
subdivision—are not part of
it. A face of the subdivision is
a maximal connected subset
of the plane that doesn’t
contain a point on an edge or
a vertex. Thus a face is an
open polygonal region whose
boundary is formed by edges
and vertices from the
subdivision. The complexity
of a subdivision is defined as
the sum of the number of
vertices, the number of edges,
and the number of faces it
consists of. If a vertex is the
endpoint of an edge, then we
say that the vertex and the

edge are incident. Similarly, a
face and an edge on its
boundary are incident, and a
face and a vertex of its
boundary are incident.

What should we require from
a representation of a
subdivision? An operation
one could ask for is to
determine the face containing
a given point. This is
definitely useful in some
applications—indeed, in a
later chapter we shall design a
data structure for this—but it
Is a bit too much to ask from
a basic representation. The
things we can ask for should
be more local. For example, it
IS reasonable to require that
we can walk around the
boundary of a given face, or
that we can access one face
from an adjacent one if we
are given a common edge.
Another operation that could
be useful is to visit all the
edges around a given vertex.
The representation that we
shall discuss supports these
operations. It is called the
doubly-connected edge list.

A doubly-connected edge list
contains a record for each
face, edge, and vertex of the

subdivision. Besides the
geometric and topological
information—to be described
shortly—each record may
also store additional
information. For instance, if
the subdivision represents a
thematic map for vegetation,
the doubly- connected edge
list would store in each face
record the type of vegetation
of the corresponding region.
The additional information is
also called attribute
information. The geometric
and topological information
stored in the doubly-
connected edge list should
enable us to perform the basic
operations mentioned earlier.
To be able to walk around a
face in counterclockwise
order we store a pointer from
each edge to the next. It can
also come in handy to walk
around a face the other way,
so we also store a pointer to
the previous edge. An edge
usually bounds two faces, so
we need two pairs of pointers
for it. It is convenient to view
the different sides of an edge
as two distinct half-edges, so
that we have a unique next
half-edge and previous half-
edge for every half-edge. This
also means that a half-edge
bounds only one face. The
two half-edges we get for a
given edge are called twins.

Defining the next half-edge
of a given half-edge with
respect to a counterclockwise
traversal of a face induces an
orientation on each half-edge:
it is oriented such that the
face that it bounds lies to its
left for an observer walking
along the edge. Because half-
edges are oriented we can
speak of the origin and the
destination of a half-edge. If a
half-edge e has v as its origin
and w as its destination, then
its twin Twin(e) has w as its
origin and v as its destination.
To reach the boundary of a
face we just need to store one
pointer in the face record to
an arbitrary half-edge
bounding the face. Starting
from that half-edge, we can
step from each half-edge to
the next and walk around the
face.

what we just said does not
quite hold for the boundaries
of holes in a face: if they are
traversed in counterclockwise
order then the face lies to the
right. It will be convenient to
orient half-edges such that
their face always lies to the
same side, so we change the
direction of traversal for the
boundary of a hole to
clockwise. Now a face always
lies to the left of any half-

edge on its boundary.

Another consequence is that
twin half-edges always have
opposite orientations. The
presence of holes in a face
also means that one pointer
from the face to an arbitrary
half-edge on its boundary is
not enough to visit the whole
boundary: we need a pointer
to a half-edge in every
boundary component. If a
face has isolated vertices that
don’t have any incident edge,
we can store pointers to them
as well. For simplicity we’ll
ignore this case.

Let’s summarize. The
doubly-connected edge list
consists of three collections
of records: one for the
vertices, one for the faces,
and one for the half-edges.
These records store the
following geometric and
topological information:

u The vertex record of a
vertex v stores the
coordinates of v in a field
called Coordinates(v). It also
stores a pointer
IncidentEdge(V) to an
arbitrary half-edge that has v
as its origin.

u The face record of a
face f stores a pointer
OuterComponent(f) to some
half-edge on its outer

boundary. For the unbounded
face this pointer is nil. It also
stores a list
InnerComponents(f), which
contains for each hole in the
face a pointer to some half-
edge on the boundary of the
hole.

n The half-edge record of
a half-edge e stores a pointer
Origin(e) to its origin, a
pointer Twin(e) to its twin
half-edge, and a pointer
IncidentFace(e) to the face
that it bounds. We don’t need
to store the destination of an
edge, because it is equal to
Origin(Twin(e)). The origin
IS chosen such that
IncidentFace(e) lies to the left
of e when it is traversed from
origin to destination. The
half-edge record also stores
pointers Next(e) and Prev(e)
to the next and previous edge
on the boundary of
IncidentFace(e). Thus Next(e)
Is the unique half-edge on the
boundary of IncidentFace(e)
that has the destination of e as
its origin, and Prev(e) is the
uniqgue half-edge on the
boundary of IncidentFace(e)
that has Origin(e) as its
destination.

A constant amount of
information is used for each
vertex and edge. A face may
require more storage, since
the list InnerComponents(f)

has as many elements as there
are holes in the face.

Because any half-edge is
pointed to at most once from
all InnerComponents(f) lists
together, we conclude that the
amount of storage is linear in
the complexity of the
subdivision.

An example of a doubly-
connected edge list for a
simple subdivision is given
below. The two half-edges
corresponding to an edge ei
are labeled Ey and ei 2.

The information stored in the
doubly-connected edge list is
enough to perform the basic
operations. For example, we
can walk around the outer
boundary of a given face f by
following Next(e) pointers,
starting from the half-edge
OuterComponent(f). We can
also visit all edges incident to
a vertex v. It is a good
exercise to figure out for
yourself how to do this.

We described a fairly general
version of the doubly-
connected edge list. In
applications where the
vertices carry no attribute
information we could store
their coordinates directly in
the Origin() field of the edge;

there is no strict need for a
separate type of vertex
record. Even more important
Is to realize that in many
applications the faces of the
subdivision carry no
interesting meaning (think of
the network of rivers or roads
that we looked at before).

If that is the case, we can
completely forget about the
face records, and the
IncidentFace() field of half-
edges. As we will see, the
algorithm of the next section
doesn’t need these fields (and
Is actually simpler to
implement if we don’t need to
update them). Some
implementations of doubly-
connected edge lists may also
insist that the graph formed
by the vertices and edges of
the subdivision be connected.

This can always be achieved
by introducing dummy edges,
and has two advantages.
Firstly, a simple graph
transversal can be used to
visit all half-edges, and
secondly, the
InnerComponents() list for
faces is not necessary.

2.3 Computing the Overlay
of Two Subdivisions

Now that we have designed a
good representation of a
subdivision, we can tackle the
general map overlay problem.
We define the overlay of two
subdivisions 81 and 82 to be
the subdivision O(81, 8§2)
such that there is a face f in
O(81, 82) if and only if there
are faces f1 in S1 and f2 in S2
such that f is a maximal
connected subset of f1 n f2.
This sounds more
complicated than it is: what it
means is that the overlay is
the subdivision of the plane
induced by the edges from S1
and S2. Figure 2.4 illustrates
this. The general map overlay
problem

Figure 2.4

Overlaying two subdivisions

IS to compute a doubly-
connected edge list for O(81;
S2), given the doubly-
connected edge lists of S1
and S2. We require that each
face in O(81;S2) be labeled
with the labels of the faces in
81 and 82 that contain it. This
way we have access to the
attribute information stored
for these faces. In an overlay
of a vegetation map and a
precipitation map this would
mean that we know for each
region in the overlay the type
of vegetation and the amount

of precipitation.

Let’s first see how much
information from the doubly-
connected edge lists for S1
and S2 we can re-use in the
doubly-connected edge list
for O(81; S2). Consider the
network of edges and vertices
of 81. This network is cut into
pieces by the edges of S2.

These pieces are for a large
part re-usable; only the edges
that have been cut by the
edges of 82 should be
renewed. But does this also
hold for the half-edge records
in the doubly-connected edge
list that correspond to the
pieces? If the orientation of a
half-edge would change, we
would still have to change the
information in these records.
Fortunately, this is not the
case. The half-edges are
oriented such that the face
that they bound lies to the
left; the shape of the face may
change in the overlay, but it
will remain to the same side
of the half-edge. Hence, we
can re-use half-edge records
corresponding to edges that
are not intersected by edges
from the other map. Stated
differently, the only half-edge
records in the doubly-
connected edge list for O(81,

S2) that we cannot borrow
from 81 or 82 are the ones
that are incident to an
intersection between edges
from different maps.

This suggests the following
approach. First, copy the
doubly-connected edge lists
of 81 and 82 into one new
doubly-connected edge list.
The new doubly-connected
edge list is not a valid
doubly-connected edge list,
of course, in the sense that it
does not yet represent a
planar subdivision. This is the
task of the overlay algorithm:
it must transform the doubly-
connected edge list into a
valid doubly-connected edge
list for O(81; S2) by
computing the intersections
between the two networks of
edges, and linking together
the appropriate parts of the
two doubly-connected edge
lists.

We did not talk about the new
face records yet. The
information for these records
Is more difficult to compute,
so we leave this for later. We
first describe in a little more
detail how the vertex and
half-edge records of the
doubly- connected edge list
for O(81; S2) are computed.

Our algorithm is based on the
plane sweep algorithm of

Section 2.1 for com-puting
the intersections in a set of
line segments. We run this
algorithm on the set of
segments that is the union of
the sets of edges of the two
subdivisions 8§81 and §2. Here
we consider the edges to be
closed. Recall that the
algorithm is supported by two
data structures: an event
gueue Q, which stores the
event points, and the status
structure T, which is a
balanced binary search tree
storing the segments
intersecting the sweep line,
ordered from left to right. We
now also maintain a doubly-
connected edge list D.
Initially, D contains a copy of
the doubly-connected edge
list for 81 and a copy of the
doubly-connected edge list
for S2. During the plane
sweep we shall transform D
to a correct doubly-connected
edge list for O(81; S2). That
Is to say, as far as the vertex
and half-edge records are
concerned,; the face
information will be computed
later.

We Kkeep cross pointers
between the edges in the
status structure T and the
half-edge records in D that
correspond to them. This way
we can access the part of D

that needs to be changed
when we encounter an
intersection point. The
invariant that we maintain is
that at any time during the
sweep, the part of the overlay
above the sweep line has been
computed correctly.

Now, let’s consider what we
must do when we reach an
event point. First of all, we
update T and Q as in the line
segment intersection
algorithm. If the event
involves only edges from one
of the two subdivisions, this
is all; the event point is a
vertex that can be re-used.

If the event involves edges
from both subdivisions, we
must make local changes to D
to link the doubly-connected
edge lists of the two original
subdivisions at the
intersection point. This is
tedious but not difficult.

Figure 2.5

We describe the details for
one of the possible cases,
namely when an edge e of S1
passes through a vertex v of
S2, see Figure 2.5. The edge e
must be replaced by two
edges denoted e' and e". In
the doubly-connected edge
list, the two half-edges for e

must become four. We create
two new half-edge records,
both with v as the origin. The
two existing half-edges for e
keep the endpoints of e as
their origin, as shown in
Figure 2.5. Then we pair up
the existing half-edges with
the new half-edges by setting
their Twin() pointers. So e' is
represented by one new and
one existing half-edge, and
the same holds for e". Now
we must set a number of
Prev() and Next() pointers.
We first deal with the
situation around the endpoints
of e; later we’ll worry about
the situation around v. The
Next() pointers of the two
new half-edges each copy the
Next() pointer of the old half-
edge that is not its twin. The
half-edges to which these
pointers point must also
update their pointer and set it
to the new half-edges. The
correctness of this step can be
verified best by looking at a
figure.

It remains to correct the
situation around vertex v. We
must set the Next() and Prev()
pointers of the four half-
edges representing e' and e",
and of the four half-edges
incident from 82 to v. We
locate these four half-edges

from 82 by testing where ¢'
and e" should be in the cyclic
order of the edges around
vertex v. There are four pairs
of half-edges that become
linked by a Next() pointer
from the one and a Prev()
pointer from the other.

Consider the half-edge for e’
that has v as its destination. It
must be linked to the first
half-edge, seen clockwise
from €', with v as its origin.
The half-edge for e' with v as
its origin must be linked to
the first counterclockwise
half-edge with v as its
destination. The same
statements hold for e".

Most of the steps in the
description above take only
constant time. Only locating
where e' and e" appear in the
cyclic order around v may
take longer: it will take time
linear in the degree of v. The
other cases that can arise—
crossings of two edges from
different maps, and
coinciding vertices—are not
more difficult than the case
we just discussed. These
cases also take time O(m),
where m is the number of
edges incident to the event

point. This means that
updating D does not increase
the running time of the line
segment intersection
algorithm asymptotically.

Notice that every intersection
that we find is a vertex of the
overlay. It follows that the
vertex records and the half-
edge records of the doubly-
connected edge list for O(81;
S2) can be computed in
O(nlogn + klogn) time, where
n denotes the sum of the
complexities of 81 and 82,
and k is the complexity of the
overlay.

After the fields involving
vertex and half-edge records
have been set, it remains to
compute the information
about the faces of O(81; §2).
More precisely, we have to
create a face record for each
face f in O(81; §2), we have
to make OuterComponent(f)
point to a half-edge on the
outer boundary of f, and we
have to make a list
InnerComponents(f) of
pointers to half-edges on the
boundaries of the holes inside
f. Furthermore, we must set
the IncidentFace() fields of
the half-edges on the
boundary of f so that they
point to the face record of f.

Finally, each of the new faces
must be labeled with the
names of the faces in the old
subdivisions that contain it.

How many face records will
there be? Well, except for the
unbounded face, every face
has a unique outer boundary,
so the number of face records
we have to create is equal to
the number of outer
boundaries plus one. From
the part of the doubly-
connected edge list we have
constructed so far we can
easily extract all boundary
cycles. But how do we know
whether a cycle is an outer
boundary or the boundary of
a hole in a face? This can be
decided by looking at the
leftmost vertex v of the cycle,
or, in case of ties, at the
lowest of the leftmost ones.
Recall that half-edges are
directed in such a way that
their incident face locally lies
to the left. Consider the two
half-edges of the cycle that
are incident to v. Because we
know that the incident face
lies to the left, we can
compute the angle these two
half-edges make inside the
incident face. If this angle is
smaller than 180° then the
cycle is an outer boundary,
and otherwise it is the

boundary of a hole. This
property holds for the
leftmost vertex of a cycle, but
not necessarily for other
vertices of that cycle.

To decide which boundary
cycles bound the same face
we construct a graph s. For
every boundary cycle—inner
and outer—there is a node in
s. There is also one node for
the imaginary outer boundary
of the unbounded face. There
Is an arc between two cycles
if and only if one of the
cycles is the boundary of a
hole and the other cycle has a
half-edge immediately to the
left of the leftmost vertex of
that hole cycle. If there is no
half-edge to the left of the
leftmost vertex of a cycle,
then the node representing the
cycle is linked to the node of
the unbounded face. Figure
2.6 gives an example. The
dotted segments in the figure
indicate the linking of the
hole cycles to other cycles.
The graph corresponding to
the subdivision is also shown
in the figure. The hole cycles
are shown as single circles,
and the outer boundary cycles
are shown as double circles.
Observe that C3 and C6 are
in the same connected
component as C2. This
indicates that C3 and C6 are
hole cycles in the face whose

outer boundary is C2. If there
is only one hole in a face f,
then the graph s links the
boundary cycle of the hole to
the outer boundary of f. In
general this need not be the
case: a hole can also be
linked to another hole, as you
can see in Figure 2.6. This
hole, which lies in the same
face f, may be linked to the
outer boundary of f, or it may
be linked to yet another hole.
But eventually we must end
up linking a hole to the outer
boundary, as the next lemma
shows.

Lemma 2.5 Each connected
component of the graph s
corresponds exactly to the set
of cycles incident to one face.

Proof. Consider a cycle C
bounding a hole in a face f.
Because f lies locally to the
left of the leftmost vertex of
C, C must be linked to
another cycle that also

Figure 2.6

A subdivision and the
corresponding graph s

bounds f. It follows that
cycles in the same connected
component of s bound the
same face.

To finish the proof, we show
that every cycle bounding a

hole in f is in the same
connected component as the
outer boundary of f. Suppose
there is a cycle for which this
IS not the case. Let 6 be the
leftmost such cycle, that is,
the one whose the leftmost
vertex is leftmost. By
definition there is an arc
between the 6 and another
cycle 6' that lies partly to the
left of the leftmost vertex of
6. Hence, 6' is in the same
connected component as 6,
which is not the component
of the outer boundary of f.
This contradicts the definition
of6. 0

Lemma 2.5 shows that once
we have the graph s, we can
create a face record for every
component. Then we can set
the IncidentFace() pointers of
the halfedges that bound each
face f, and we can construct
the list InnerComponents(f)
and the set OuterComponent(
). How can we construct s?

Recall that in the plane sweep
algorithm for line segment
intersection we always looked
for the segments immediately
to the left of an event point.

(They had to be tested for
intersection against the

leftmost edge through the
event point.) Hence, the
information we need to
construct G is determined
during the plane sweep. So, to
construct s, we first make a
node for every cycle. To find
the arcs of s, we consider the
leftmost vertex v of every
cycle bounding a hole. If e is
the half-edge immediately left
of v, then we add an arc
between the two nodes in s
representing the cycle
containing e and the hole
cycle of which v is the
leftmost vertex. To find these
nodes in s efficiently we need
pointers from every half-edge
record to the node in s
representing the cycle it is in.
So the face information of the
doubly-connected edge list
can be set in O(h + K)
additional time, after the
plane sweep.

One thing remains: each face
f in the overlay must be
labeled with the names of the
faces in the old subdivisions
that contained it. To find
these faces, consider an
arbitrary vertex v of f. If v is
the intersection of an edge el
from S1 and an edge e2 from
S2 then we can decide which
faces of S1 and S2 contain f
by looking at the

IncidentFace() pointer of the
appropriate half-edges
corresponding to el and e2. If
v is not an intersection but a
vertex of, say, S1, then we
only know the face of S1
containing f. To find the face
of S2 containing f, we have to
do some more work: we have
to determine the face of S2
that contains v. In other
words, if we knew for each
vertex of S1 in which face of
S2 it lay, and vice versa, then
we could label the faces of
O(81, S2) correctly. How can
we compute this information?
The solution is to apply the
paradigm that has been
introduced in this chapter,
plane sweep, once more.
However, we won’t explain
this final step here. It is a
good exercise to test your
understanding of the plane
sweep approach to design the
algorithm yourself. (In fact, it
IS not necessary to compute
this information in a separate
plane sweep. It can also be
done in the sweep that
computes the intersections.)

Putting everything together
we get the following
algorithm.

Algorithm
MAPOVERLAY(81, S2)

Input. Two planar
subdivisions S1 and S2 stored
in doubly-connected edge
lists. Output. The overlay of
S1 and S2 stored in a doubly-
connected edge list D.

1. Copy the doubly-
connected edge lists for S1
and S2 to a new doubly-
connected edge list D.

2. Compute all
intersections between edges
from S1 and S2 with the
plane sweep algorithm of
Section 2.1. In addition to the
actions on T and Q required
at the event points, do the
following:

n Update D as explained
above if the event involves
edges of both S1 and S2.
(This was explained for the
case where an edge of S1
passes through a vertex of
S2.)

u Store the half-edge
Immediately to the left of the
event point at the vertex in D
representing it.

(* Now D is the doubly-
connected edge list for O(81,
S2), except that the
information about the faces
has not been computed yet. *)

Determine the boundary
cycles in O(81, S2) by
traversing D.

Construct the graph s whose
nodes correspond to boundary
cycles and whose arcs
connect each hole cycle to the
cycle to the left of its leftmost
ver-tex, and compute its
connected components. (The
information to determine the
arcs of s has been computed
in line 2, second item.)

for each connected
componentins

do Let C be the unique outer
boundary cycle in the
component and let f denote
the face bounded by the
cycle. Create a face record for
f, set OuterComponent(f) to
some half-edge of C, and
construct the list
InnerComponents(f)
consisting of pointers to one
half-edge in each hole cycle
in the component. Let the
IncidentFace() pointers of all
half-edges in the cycles point
to the face record of f.

8. Label each face of
O(S1; S2) with the names of
the faces of S1 and S2
containing it, as explained
above.

Theorem 2.6 Let S1 be a
planar subdivision of

complexity nl, let S2 be a
subdivision of complexity n2,
and let n := n1l + n2. The
overlay of S1 and S2 can be
constructed in O(n log n +
klog n) time, where Kk is the
complexity of the overlay.

Proof. Copying the doubly-
connected edge lists in line 1
takes O(n) time, and the plane
sweep of line 2 takes O(nlog
n + klog n) time by Lemma
2.3. Steps 4-7, where we fill
in the face records, takes time
linear in the complexity of
O(S1; S2). (The connected
components of a graph can be
determined in linear time by a
simple depth first search.)
Finally, labeling each face in
the resulting subdivision with
the faces of the original
subdivisions that contain it
can be done in O(nlogn +
klogn) time.

2.4 Boolean Operations

The map overlay algorithm is
a powerful instrument that
can be used for various other
applications. One particular
useful one is performing the
Boolean operations union,
intersection, and difference
on two polygons P1 and P2.
See Figure 2.7 for an

example. Note that the output
of the operations might no
longer be a polygon. It can
consist of a number of
polygonal regions, some with
holes.

Figure 2.7
The Boolean operations
union, intersection and

difference on two polygons Pi
and P2

To perform the Boolean
operation we regard the
polygons as planar maps
whose bounded faces are
labeled P1 and P2,
respectively. We compute the
overlay of these maps, and
we extract the faces in the
overlay whose labels
correspond to the particular
Boolean operation we want to
perform. If we want to
compute the intersection P1 n
P2, we extract the faces in the
overlay that are labeled with
P1 and P2.

If we want to compute the
union P1 u P2, we extract the
faces in the overlay that are
labeled with P1 or P2. And if
we want to compute the
difference P1 \ P2, we extract
the faces in the overlay that
are labeled with P1 and not
with P2.

Because every intersection
point of an edge of P1 and an
edge of P2 is a vertex of P1 n
P2, the running time of the

algorithm is O(nlogn +
klogn), where n is the total
number of vertices in P1 and
P2, and Kk is the complexity of
P1 n P2. The same holds for
the other Boolean operations:
every intersection of two
edges is a vertex of the final
result, no matter which
operation we want to
perform. We immediately get
the following result.

Corollary 2.7 Let P1 be a
polygon with nl vertices and
P2 a polygon with n2
vertices, and let n := nl + n2.
Then P1 n P2, P1 u P2, and
P1\ P2 can each be computed
in O(n log n + Kk log n) time,
where Kk is the complexity of
the output.

2.5 Notes and Comments

The line segment intersection
problem is one of the most
fundamental problems in
computational geometry. The
O(nlog n + klog n) solution
presented in this chapter was
given by Bentley and
Ottmann [47] in 1979. (A few
years earlier, Shamos and
Hoey [351] had solved the
detection problem, where one
Is only interested in deciding
whether there is at least one
intersection, in O(nlogn)
time.) The method for
reducing the working storage
from O(n + k) to O(n)

described in this chapter is
taken from Pach and Sharir
[312], who also show that the
event list can have size
Q.(nlogn) before this
improvement. Brown [77]
describes an alternative
method to achieve the
reduction.

The lower bound for the
problem of reporting all line
segment intersections is
Q.(nlogn + k), so the plane
sweep algorithm described in
this chapter is not optimal
when k is large. A first step
towards an optimal algorithm
was taken by Chazelle [88],
who gave an algorithm with
O(nlog2n/loglogn + k)
running time. In 1988
Chazelle and Edelsbrunner
[99, 100] presented the first
O(nlog n + K) time algorithm.
Unfortunately, it requires O(n
+ k) storage. Later Clarkson
and Shor [133] and
Mulmuley [288] gave
randomized incremental
algorithms whose expected
running time is also O(nlogn
+ K). (See Chapter 4 for an
explanation of randomized
algorithms.) The working
storage of these algorithms is
O(Mm and O(M + k),
respectively. Unlike the
algorithm of Chazelle and
Edelsbrunner, these
randomized algorithms also

work for computing
intersections in a set of
curves. Balaban [35] gave the
first deterministic algorithm
for the segment intersection
problem that works in O(nlog
n + k) time and O(n) space. It
also works for curves.

There are cases of the line
segment intersection problem
that are easier than the
general case. One such case is
where we have two sets of
segments, say red segments
and blue segments, such that
no two segments from the
same set intersect each other.
(This is, in fact, exactly the
network overlay problem. In
the solution described in this
chapter, however, the fact
that the segments came from
two sets of non-intersecting
segments was not used.) This
so-called red-blue line
segment intersection problem
was solved in O(nlog n + k)
time and O(n) storage by
Mairson and Stolfi [262]
before the general problem
was solved optimally. Other
optimal red-blue intersection
algorithms were given by
Chazelle et al. [101] and by
Palazzi and Snoeyink [315].
If the two sets of segments
form connected subdivisions
then the situation is even

better: in this case the overlay
can be computed in O(n + k)
time, as has been shown by
Finke and Hinrichs [176].
Their result generalizes and
Improves previous results on
map overlay by Nievergelt
and Preparata [293], Guibas
and Seidel [200], and
Mairson and Stolfi [262].

The line segment intersection
counting problem is to
determine the number of
intersection points in a set of
n line segments. Since the
output is a single integer, a
term with k in the time bound
no longer refers to the output
size (which is constant), but
only to the number of
intersections. Algorithms that
do not depend on the number
of intersections take O(n4/3
logcn) time, for some small
constant ¢ [4, 95]; a running
time close to O(nlogn) is not
known to exist.

Plane sweep is one of the
most important paradigms for
designing geometric
algorithms. The first
algorithms in computational
geometry based on this
paradigm are by Shamos and
Hoey [351], Lee and
Preparata [250], and Bentley
and Ottmann [47]. Plane

sweep algorithms are
especially suited for finding
intersections in sets of
objects, but they can also be
used for solving many other
problems. In Chapter 3 plane
sweep solves part of the
polygon triangulation
problem, and in Chapter 7 we
will see a plane sweep
algorithm to compute the so-
called Voronoi diagram of a
set of points. The algorithm
presented in the current
chapter sweeps a horizontal
line downwards over the
plane. For some problems it
IS more convenient to sweep
the plane in another way. For
instance, we can sweep the
plane with a rotating line—
see Chapter 15 for an
example—or with a pseudo-
line (a line that need not be
straight, but otherwise
behaves more or less as a
line) [159]. The plane sweep
technique can also be used in
higher dimensions: here we
sweep the space with a
hyperplane [213, 311, 324].
Such algorithms are called
space sweep algorithms.

structure, or in fact a variant

of it, was described by Muller
and Preparata [286]. There
are also other data structures
for storing subdivisions, such
as the winged edge structure
by Baumgart [40] and the
quad edge structure by
Guibas and Stolfi [202]. The
difference between all these
structures is small. They all
have more or less the same
functionality, but some save a
few bytes of storage per edge.

7 Voronoi Diagrams
The Post Office Problem

Suppose you are on the
advisory board for the
planning of a supermarket
chain, and there are plans to
open a new branch at a
certain location. To predict
whether the new branch will
be profitable, you must
estimate the number of
customers it will attract. For
this you have to model the
behavior of your potential
customers: how do people
decide where to do their
shopping? A similar question
arises in social geography,
when studying the economic
activities in a country: what is
the trading area of certain
cities? In a more abstract
setting we have a set of

Figure 7.1
The trading areas of the
capitals of the twelve

provinces in the Netherlands,
as predicted by the Voronoi
assignment model

central places—called sites—
that provide certain goods or
services, and we want to
know for each site where the
people live who obtain their
goods or services from that
site. (In computational

7 So dd Voronoi
Bai toan buu dién

Gid su ban ¢ trong hoi déng twr van
cho mét du an xay dung hé théng
siéu thi, va co ké hoach mé mot chi
nhanh méi tai mot dja diém nao do.
Dé dy dodn duogc chi nhanh méi
nay c6 thu dugc lgi nhudn hay
khong, ban phai udc tinh dugc sb
khach hang ma né c6 thé thu hut
dugc. Dé 1am duoc diéu nay, ban
phai m6 hinh hoa hanh vi cua cac
khdch hang tiém ning cia ban:
cach thic ho chon noi mua sim?
Mot cau hoi twong tu cling phéat
sinh trong dia 1y xa hoi, khi nghién
cuu cac hoat dong kinh té & mot
quéc gia: Khu vuc nao 13 khu vuc
throng mai ctia thanh phd? Trong
mdt cdu hinh triru tuong hon,
ching ta c6 mdt tap hop cac

Hinh 7.1

Cac khu vuc thuong mai cia cac
thu phu tuong tng véi 12 tinh & Ha
Lan, theo du doan cia mé hinh
phan dinh VVoronoi

dia diém trung tdm-duoc goi la cac
vi tri-cung cdp cho chung ta thong
tin ve hang hdéa va dich vu, va
ching ta ciing can biét ¢ nhiing vi
tri ¢6 ai 1a ngudi chip nhan mua
hang héa va dich vu tai chd (Trong

geometry the sites are
traditionally viewed as post
offices where customers want
to post their letters—hence
the subtitle of this chapter.)
To study this question we
make the following
simplifying assumptions:

u the price of a particular
good or service is the same at
every site;

u the cost of acquiring
the good or service is equal to
the price plus the cost of
transportation to the site; 147
m the cost of transportation to
a site equals the Euclidean
distance to the site times a
fixed price per unit distance;

u consumers try to
minimize the cost of
acquiring the good or service.
Usually these assumptions are
not completely satisfied:
goods may be cheaper at
some sites than at others, and
the transportation cost
between two points s
probably not linear in the
Euclidean distance between
them. But the model above
can give a rough
approximation of the trading
areas of the sites. Areas
where the behavior of the
people differs from that
predicted by the model can be
subjected to further research,

hinh hoc tinh todn, thong thuong
cac vi tri duogc xem nhu cac buu
dién ¢ d6 khach hang can gui thu
cua ho, dé ciing 1a ti€u dé cua
chuong nay.) Dé nghién ctru nhiing
van d& nay, chung ta can phai dat
ra cac gia thuyét nhu sau:

m gid cua mdt hang hoa hay dich vu
nhu nhau & moi vi tri;

m chi phi mua hang hoa hay dich
vu bang gia cdng v4i chi phi van
chuyén dén cac vi tri d6; 147

m chi phi van chuyén dén mot vi tri
bang khoang cich Euclide dén vi
tri d6 nhan gid ¢6 dinh trén mot
don vi khoang cach,;

m ngudi tiéu diung cd ging giam
thiéu chi phi mua hang hoa hay
dich vu.Thong thuong nhiing gia
thuyét nay khong dugc thoa mén
hoan toan: hang héa & mot sb vi tri
c6 thé ré hon & mét sd vi tri khac,
va chi phi vin chuyén gifta hai
diém c6 thé khong phu thudc tuyén
tinh vaokhoang cach Euclide giira
ching. Nhung mo hinh & trén cho
ching ta thdy mot gan dang tho vé
khu vuc thuong mai gém nhiéu vi
tri. Khu vuc ma trong d6 con nguoi
hanh dong khong dung véi nhitng
gi mo hinh tién doan can phai dugc
nghién ctru thém, dé xem diéu gi da

to see what caused the
different behavior.

Our interest lies in the
geometric interpretation of
the model above. The

assump-tions in the model
induce a subdivision of the
total area under consideration
into regions—the trading
areas of the sites—such that
the people who live in the
same region all go to the
same site. Our assumptions
imply that people simply get
their goods at the nearest
site—a fairly realistic
situation. This means that the
trading area for a given site
consists of all those points for
which that site is closer than
any other site. Figure 7.1
gives an example. The sites in
this figure are the capitals of
the twelve provinces in the
Netherlands.

The model where every point
Is assigned to the nearest site
is called the Voronoi
assignment model. The
subdivision induced by this
model is called the Voronoi
diagram of the set of sites.
From the Voronoi diagram
we can derive all kinds of
information about the trading
areas of the sites and their
relations. For example, if the
regions of two sites have a
common boundary then these
two sites are likely to be in

gdy ra nhirng khac biét do.

O day, ching ta chi quan tdm dén
khia canh hinh hoc ctia m6 hinh néi
trén. Cac gia thiét trong mo hinh
dan dén viéc can phai chia nho khu
vuc dang xét thanh cac vung-Ccac
khu vuc thuong mai bao gébm céc
vi tri-sao cho tit ca nhing nguoi
séng trong cing mot ving déu di
dén cing mot vi tri. Gia thuyét cta
ching ta chi don gian 1a, nguoi ta
chi mua hang hoa & vi tri gan nhét-
mot tinh hudng rat phu hop véi
thuc té. Picu nay c6 nghia 1a khu
vuc thuong mai ddi véi mot vi tri
nhit dinh bao gdm tit ca nhiing
diém nao gan voi vi tri 6 hon so
v6i bat ky vi tri ndo khéc. Xem vi
du trong Hinh 7.1. Cac vi tri trong
hinh nay la céc thu phu cua 12 tinh
o Ha Lan.

M6 hinh trong d6 mdi diém dugc
4n dinh véi vi tri gﬁn nhat duogc go1i
la. mé6 hinh phan dinh Voronoi.
Viéc phan chia cia mé hinh nay
duoc goi 1a so dd Voronoi cua tap
hop céc vi tri. Tir so d6 Voronoi,
ching ta c6 thé rat ra dugc tat ca
cic loai thong tin vé khu wvuc
throng mai cta cac vi tri va méi
quan hé gitra chiing. Vi du, néu cac
vung cua hai vi tri c6 bi€n chung
thi hai vi tri nay co6 1€ & trong tinh

for
in the

direct competition
customers that live
boundary region.

The Voronoi diagram is a
versatile geometric structure.
We have described an
application to social
geography, but the Voronoi
diagram has applications in
physics, astronomy, robotics,
and many more fields. It is
also closely linked to another

important geometric
structure, the so-called
Delaunay triangulation,

which we shall encounter in

Chapter 9. In the current
chapter we shall confine
ourselves to the basic
properties and the
construction of the Voronoi
diagram of a set of point sites
in the plane.

Definition and Basic
Properties

Denote the Euclidean

distance between two points p
and g by dist(p, g). In the
plane we have

dist(p, q) :=\J(Px - gx)2 + (Py
- qy)2.

Let P: = {pl, p2pn} be a set
of n distinct points in the
plane; these points are the
sites. We define the Voronoi
diagram of P as the
subdivision of the plane into
n cells,

trang canh tranh truc tiép dé 16i kéo
khach hang sdng trong ving bién.

So dd Voronoi 13 mot cu trac hinh
hoc da nang. Ching ta da mo ta
mot ung dung cho dia ly xa hdi,
nhung cac so dd Voronoi ciing c6
nhitng tng dung trong vat 1y, thién
van hoc, robot hoc, va nhiéu linh
vuc khac. No6 cling c6 mbi lién hé
mat thiét v&i mot ciu tric hinh hoc
quan trong khéc, dugc goi la ludi
tam giac Delaunay, mot van dé ma
ching ta s& xét trong Chuong 9.
Trong chuong ndy, ching ta chi tap
trung vao cac tinh chit co ban va
cAu tric cua so d6 Voronoi cua tap
hop cac vi tri diém
phing.

trong mat

Dinh nghia va céc tinh chit co ban

Ki hi€u khoang cach Euclide gitra
hai diém p va q 1a.... (p, q). Trong
mit phang, chung ta c6

Quén (p, q): =\ J (px - gx) 2 + (Py
- qy) 2.

bat P = {pl, p2pn} 1a mdt tap hop
cic n diém phan biét trong mit
phang, nhitng diém nay 1 cic vi
tri. Ching ta dinh nghia so d6
Voronoi cua P 1a sy chia nhé mat
phang thanh n 6,

9 Delaunay Triangulations
Height Interpolation i8I
When we talked about maps of
a piece of the earth’s surface in
previous chapters, we
implicitly assumed there is no
relief. This may be reasonable
for a country like the
Netherlands, but it is a bad
assumption for Switzerland. In
this chapter we set out to
remedy this situation.

We can model a piece of the
earth’s surface as a terrain. A
terrain is a 2-dimensional
surface in 3-dimensional space
with a special property: every
vertical line intersects it in a
point, if it intersects it at all. In
other words, it is the graph of a
function f: A ¢ R2 * R that
assigns a height f (p) to every
point p in the domain, A, of the
terrain. (The earth is round, so
on a global scale terrains
defined in this manner are not a
good model of the earth. But
on a more local scale terrains
provide a fairly good model.) A
terrain can be visualized with a
perspective drawing like the
one in Figure 9.1, or with
contour lines—Iines of equal
height—Ilike on a topographic
map.

Figure 9.1
A perspective view of a terrain

Of course, we don’t know the
height of every point on earth;
we only know it where we’ve
measured it. This means that
when we talk about some
terrain, we only know the value
of the function f at a finite set P
¢ A of sample points. From the
height of the sample points we
somehow have to approximate
the height at the other points in
the domain. A naive approach
assigns to every p e A the
height of the nearest sample
point. However, this gives a
discrete terrain, which

doesn’t look very
natural. Therefore our approach
for approximating a terrain is
as follows. We first determine
a triangulation of P: a planar
subdivision whose bounded
faces are triangles and whose
vertices are the points of P.
(We assume that the sample
points are such that we can
make the triangles cover the
domain of the terrain.) We then
lift each sample point to its
correct height, thereby
mapping every triangle in the
triangulation to a triangle in 3-
space. Figure 9.2 illustrates
this. What we get is a
polyhedral terrain, the graph of
a continuous function that is
piecewise linear. We can use
the polyhedral terrain as an
approximation of the original
terrain.

Figure 9.2

Obtaining a polyhedral terrain
from a set of sample points

The question remains: how do
we triangulate the set of sample
points? In general, this can be
done in many different ways.
But which triangulation is the
most appropriate one for our
purpose, namely to
approximate a terrain? There is
no definitive answer to this
question. We do not know the
original terrain, we only know
its height at the sample points.
Since we have no other
information, and the height at
the sample points is the correct
height for any triangulation, all
triangulations of P seem
equally good. Nevertheless,
some triangulations look more
natural than others. For
example, have a look at Figure
9.3, which shows two
triangulations of the same point
set. From the heights of the
sample points we get the
Impression that the sample
points were taken from a
mountain ridge. Triangulation
(@ reflects this intuition.
Triangulation (b), however,
where one single edge has been
“flipped,” has introduced a
narrow valley cutting through

the mountain ridge. Intuitively,
this looks wrong. Can we turn
this intuition into a criterion
that tells us that triangulation
(@) is better than triangulation
(b)?

Figure 9.3

Flipping one edge can make a
big difference

The problem with triangulation
(b) is that the height of the
point q is determined by two
points that are relatively far
away. This happens because g
lies in the middle of an edge of
two long and sharp triangles.
The skinniness of these
triangles causes the trouble. So
it seems that a triangulation
that contains small angles is
bad. Therefore we will rank
triangulations by comparing
their smallest angle. If the
minimum angles of two
triangulations are identical,
then we can look at the second
smallest angle, and so on.
Since there is only a finite
number of different
triangulations of a given point
set P, this implies that there
must be an optimal
triangulation, one that
maximizes the minimum angle.
This will be the triangulation
we are looking for.

9.1 Triangulations of Planar
Point Sets

Let P := {p1, p2,..., pn} be a set
of points in the plane. To be

able to formally define a
triangulation of P, we first
define a maximal planar
subdivision as a subdivision S
such that no edge connecting
two vertices can be added to S
without destroying its
planarity. In other words, any
edge that is not in S intersects
one of the existing edges. A
triangulation of P is now
defined as a maximal planar
subdivision whose vertex set is
P.

With this definition it is
obvious that a triangulation
exists. But does it consist of
triangles? Yes, every face
except the unbounded one must
be a triangle: a bounded face is
a polygon, and we have seen in
Chapter 3 that any polygon can
be triangulated. What about the
unbounded face? It is not
difficult to see that any
segment connecting two
consecutive points on the
boundary of the convex hull of
P is an edge in any
triangulation T. This implies
that the union of the bounded
faces of T is always the convex
hull of P, and that the
unbounded face is always the

complement of the convex hull.
(In our application this means
that if the domain is a
rectangular area, say, we have
to make sure that the corners of
the domain are included in the
set of sample points, so that the
triangles in the triangulation
cover the domain of the
terrain.) The number of
triangles is the same in any
triangulation of P. This also
holds for the number of edges.
The exact numbers depend on
the number of points in P that
are on the boundary of the
convex hull of P. (Here we also
count points in the interior of
convex hull edges. Hence, the
number of points on the convex
hull boundary is not necessarily
the same as the number of
convex hull vertices.) This is
made precise in the following
theorem.

Theorem 9.1 Let P be a set of n
points in the plane, not all
collinear, and let k denote the
number of points in P that lie
on the boundary of the convex
hull of P. Then any
triangulation of P has 2n - 2 - k
triangles and 3n - 3 - k edges.
Proof. Let T be a triangulation
of P, and let m denote the
number of triangles of T. Note
that the number of faces of the
triangulation, which we denote
by nf, is m + 1. Every triangle
has three edges, and the

unbounded face has k edges.
Furthermore, every edge is
incident to exactly two faces.
Hence, the total number of
edges of T is ne := (3m + Kk)/2.
Euler’s formula tells us that
n-ne+nf=2.

Plugging the values for ne and
nf into the formula, we get m =
2n - 2 - k, which in turn implies
ne=23n-3-k. 0

Let T be a triangulation of P,
and suppose it has m triangles.
Consider the 3m angles of the
triangles of T, sorted by
increasing value. Let ai, a2a3m
be the resulting sequence of
angles; hence, ai < aj, for i <.
We call A(T) = (al, a2,...
a3m) the angle-vector of T. Let
T' be another triangulation of
the same point set P, and let
A(T) := (ai, a2,..., a3m) be its
angle-vector. We say that the
angle-vector of T is larger than
the angle-vector of T' if A(T) is
lexicographically larger than
A(T", or, in other words, if
there exists an index i with 1 <
I < 3m such that

aj =aj forall j<i,andai > aj.

We denote this as A(T) >
A(T"). A triangulation T is
called angle-optimal if A(T) >

A(T") for all triangulations Tj
of P. Angle-optimal
triangulations are interesting
because, as we have seen in the
introduction to this chapter,
they are good triangulations if
we want to construct a
polyhedral terrain from a set of
sample points.

Below we will study when a
triangulation is angle-optimal.
To do this it is useful to know
the following theorem, often
called Thales’s Theorem.
Denote the smaller angle
defined by three points p, g, r

by Apqr.

Theorem 9.2 Let C be a circle,
I a line intersecting C in points
aand b, and p, q, r, and s points
lying on the same side of I.
Suppose that p and g lie on C,
that r lies inside C, and that s
lies outside C. Then

Aarb > Aapb = Aagb > Aasb.

Now consider an edge e = pip]
of a triangulation T of P. Ife is
not an edge of the unbounded
face, it is incident to two
triangles pipjpk and pipjpi. If
these two triangles form a
convex quadrilateral, we can
obtain a new triangulation Tj
by removing pipj from T and
inserting pkpi instead. We call

this operation an edge flip. The
only difference in the angle-
vector of T and Tj are the six
angles al,...,a6 in A(T), which
are replaced by ai ,...,a6 in
A(T"). Figure 9.4 illustrates
this. We call the edge e = pTpj
an illegal edge if

min ai < min aj.

1<1<6 1<i<6 °

In other words, an edge is

illegal if we can locally
increase the smallest angle by
flipping that edge. The
following observation

immediately follows from the
definition of an illegal edge.

Observation 9.3 Let T be a
triangulation with an illegal
edge e. Let T be the
triangulation obtained from T
by flipping e. Then A(T) >
A(T).

It turns out that it is not
necessary to compute the
angles ail,...,a6, a[,..,a6 to
check whether a given edge is
legal. Instead, we can use the
simple criterion stated in the
next lemma. The correctness of
this criterion follows from
Thales’s Theorem.

Lemma 9.4 Let edge pipj be
incident to triangles pipjpk and
pipjpl, and let C be the circle
through pi, pj, and pk. The

edge pTpj is illegal if and only
if the point pl lies in the
interior of C. Furthermore, if
the points pi, pj, pk, pl form a
convex quadrilateral and do not
lie on a common circle, then
exactly one of pTpj and pkpl is
an illegal edge.

Observe that the criterion is
symmetric in pk and pl: pl lies
inside the circle through pi, pj,
pk if and only if pk lies inside
the circle through pi, pj, pl
When all four points lie on a
circle, both pipj and pkpi are
legal. Note that the two
triangles incident to an illegal
edge must form a convex
quadrilateral, so that it is
always possible to flip an
illegal edge.

We define a legal triangulation
to be a triangulation that does
not contain any illegal edge.
From the observation above it
follows that any angle-optimal
triangulation IS legal.
Computing a legal
triangulation is quite simple,
once we are given an initial
triangulation. We simply flip
illegal edges until all edges are
legal.

Algorithm
LEGALTRIANGULATION(T
)
Input. Some triangulation T of
a point set P.

Output. A legal triangulation of
P.

1. while T contains an
illegal edge pipj

2. do (* Flip pTpj %)

3. Let pipjpk and pipjpl be
the two triangles adjacent to
pipj.

4, Remove pipj from T, and
add pkpl instead.

5. return T

Why does this algorithm
terminate? It follows from
Observation 9.3 that the angle-
vector of T increases in every
iteration of the loop. Since
there is only a finite number of
different triangulations of P,
this proves termination of the
algorithm. Once it terminates,

the result is a legal
triangulation. Although the
algorithm is guaranteed to

terminate, it is too slow to be
interesting. We have given the
algorithm anyway, because
later we shall need a similar
procedure.

But first we will look at
something completely
different—or so it seems. 195

9.2 The

Triangulation
Let P be a set of n points—or
sites, as we shall sometimes
call them—in the plane. Recall
from Chapter 7 that the
Voronoi diagram of P is the

Delaunay

subdivision of the plane into n
regions, one for each site in P,
such that the region of asite p e
P contains all points in the
plane for which p is the closest
site. The Voronoi diagram of P
Is denoted by Vor(P). The
region of a site p is called
Figure 9.5 The dual graph of
Vor(P)

the Voronoi cell of p; it is
denoted by V(p). In this section
we will study the dual graph of
the Voronoi diagram. This
graph g has a node for every
Voronoi cell—equivalently, for
every site—and it has an arc
between two nodes if the
corresponding cells share an
edge. Note that this means that
g has an arc for every edge of
Vor(P). As you can see in
Figure 9.5, there is a one-to-
one correspondence between
the bounded faces of g and the
vertices of VVor(P).

Figure 9.6 The Delaunay graph
Dg(P)

Consider the straight-line
embedding of g, where the
node corresponding to the
Voronoi cell V(p) is the point
p, and the arc connecting the
nodes of V(p) and V(q) is the
segment pg—see Figure 9.6.
We call this embedding the
Delaunay graph of P, and we
denote it by Dg(P). (Although
the name sounds French,

Delaunay graphs have nothing
to do with the French painter.
They are named after the
Russian mathematician Boris
Nikolaevich Delone, who
wrote his own name as “BopHc
HHKoiaeBHq DeioHe,” which
would be transliterated into
English as “Delone.” However,
since his work was published
in French—at his time, the
languages of science were
French and German—nhis name
Is better known in the French
transliteration.) The Delaunay
graph of a point set turns out to
have a number of surprising
properties. The first is that it is
always a plane graph: no two
edges in the embedding cross.

Theorem 9.5 The Delaunay
graph of a planar point set is a
plane graph.

Proof. To prove this, we need a
property of the edges in the
Voronoi diagram stated in
Theorem 7.4(i). For
completeness we repeat the
property, phrased here in terms
of Delaunay graphs.

The edge pipj is in the
Delaunay graph Dg(P) if and
only if there is a closed disc Cij
with pi and pj on its boundary

and no other site of P contained
in it. (The center of such a disc
lies on the common edge of
V(pi) and v(pj).)

Define tij to be the triangle
whose vertices are pi, pj, and
the center of Cij. Note that the
edge of tij connecting pi to the
center of Cij is contained in
V(pi); a similar observation
holds for pj. Now let pkpl be
another edge of Dg(P), and
define the circle Ckl and the
triangle tkl similar to the way
Cij and tij were defined.

Suppose for a contradiction
that pipj and pkpl intersect.
Both pk and pl must lie outside
Cij and so they also lie outside
tij. This implies that pkpl must
intersect one of the edges of tij
incident to the center of Cij.
Similarly, pTpj must intersect
one of the edges of tkl incident
to the center of CKkl. It follows
that one of the edges of tij
incident to the center of Cij
must intersect one of the edges
of tkl incident to the center of
Ckl. But this contradicts that
these edges are contained in
disjoint VVoronoi cells.

The Delaunay graph of P is an
embedding of the dual graph of
the Voronoi diagram. As
observed earlier, it has a face
for every vertex of Vor(P). The
edges around a face correspond

to the Voronoi edges incident
to the corresponding Voronoi
vertex. In particular, if a vertex
v of Vor(P) is a vertex of the
Voronoi cells for the sites pl;
p2, p3,.., pk, then the
corresponding face f in Dg(P)
has pl,p2, p3,..,pk as its
vertices. Theorem 7.4(i) tells us
that in this situation the points
p1;p2,p3,....pk lie on a circle
around v, so we not only know
that f is a k-gon, but even that
it is convex.

If the points of P are distributed
at random, the chance that four
points happen to lie on a circle
is very small. We will—in this
chapter—say that a set of
points is in general position if it
contains no four points on a
circle. If P is in general
position, then all vertices of the
Voronoi diagram have degree
three, and consequently all
bounded faces of Dg(P) are
triangles. This explains why
DG(P) is often called the
Delaunay triangulation of P.
We shall be a bit more careful,
and will call Dg(P) the
Delaunay graph of P. We
define a Delaunay triangulation
to be any triangulation obtained
by adding edges to the
Delaunay graph. Since all faces
of Dg(P) are convex, obtaining
such a triangulation is easy.
Observe that the Delaunay
triangulation of P is unique if

and only if DG(P) is a
triangulation, which is the case
if P is in general position.

We now rephrase Theorem 7.4
about Voronoi diagrams in
terms of Delaunay graphs.
Theorem 9.6 Let P be a set of
points in the plane.

(i) Three points pi, pj, pk e
P are vertices of the same face
of the Delaunay graph of P if
and only if the circle through
pi, pj, pk contains no point of P
in its interior.

(i) Two points pi, pj e P
form an edge of the Delaunay
graph of P if and only if there
is a closed disc C that contains
pi and pj on its boundary and
does not contain any other
point of P.

Theorem 9.6 readily implies
the following characterization
of Delaunay triangulations.
Theorem 9.7 Let P be a set of
points in the plane, and let T be
a triangulation of P. Then T is a
Delaunay triangulation of P if
and only if the circumcircle of
any triangle of T does not
contain a point of P in its
interior.

Since we argued before that a
triangulation is good for the
purpose of height interpolation

if its angle-vector is as large as
possible, our next step should
be to look at the angle-vector
of Delaunay triangulations. We
do this by a slight detour
through legal triangulations.

Theorem 9.8 Let P be a set of
points in the plane. A
triangulation T of P is legal if
and only if T is a Delaunay
triangulation of P.

Proof. It follows immediately
from the definitions that any
Delaunay triangulation is legal.

We shall prove that any legal
triangulation is a Delaunay
triangulation by contradiction.
So assume T is a legal
triangulation of P that is not a
Delaunay triangulation. By
Theorem 9.6, this means that
there is a triangle pipjpk such
that the circumcircle C(pipjpk)
contains a point pl e P in its
interior. Let e := pipj be the
edge of pipjpl such that the
triangle pipjpl does not
intersect pipjpk. Of all such
pairs (pipjpk, pl) in T, choose
the one that maximizes the
angle Apiplpj. Now look at the
triangle pipjpm adjacent to

pipjpk along e. Since T is legal,
e is legal. By Lemma 9.4 this
implies that pm does not lie in
the interior of C(pipjpk). The
circumcircle C(pipjpm) of
pipjpm contains the part of
C(pipjpk) that is separated
frompipjpk by e. Consequently,
pl e C(pipjpm). Assume that
pjpm is the edge of pipjpm
such that pjpmpl does not
intersect pipjpm. But now
Apjplpm > Apiplpj by Thales’s
Theorem, contradicting the
definition of the pair (pipjpk,
pl). EO

Since any angle-optimal
triangulation must be legal,
Theorem 9.8 implies that any
angle-optimal triangulation of
P is a Delaunay triangulation of
P. When P is in general
position, there is only one legal
triangulation, which is then the
only angle-optimal
triangulation, namely the
unique Delaunay triangulation
that coincides with the
Delaunay graph. When P is not
In general position, then any
triangulation of the Delaunay
graph is legal. Not all these
Delaunay triangulations need
to be angle-optimal. However,
their angle-vectors do not differ
too much. Moreover, using
Thales’s Theorem one can
show that the minimum angle
in any triangulation of a set of
co-circular points is the same,

that is, the minimum angle is
independent of the
triangulation. This implies that
any triangulation turning the
Delaunay graph into a
Delaunay triangulation has the
same minimum angle. The
following theorem summarizes
this.

Theorem 9.9 Let P be a set of
points in the plane. Any angle-
optimal trian-gulation of P is a
Delaunay triangulation of P.
Furthermore, any Delaunay
triangulation of P maximizes
the minimum angle over all
triangulations of P.

9.3 Computing the Delaunay
Triangulation

We have seen that for our
purpose—approximating a
terrain by constructing a
polyhedral terrain from a set P
of sample points—a Delaunay
triangulation of P is a suitable
triangulation. This is because
the Delaunay triangulation
maximizes the minimum angle.
So how do we compute such a
Delaunay triangulation?

We already know from Chapter
7 how to compute the VVoronoi
diagram of P. From Vor(P) we
can easily obtain the Delaunay
graph DG(P), and Dby
triangulating the faces with
more than three vertices we can
obtain a Delaunay

triangulation. In this section we
describe a different approach:
we will compute a Delaunay
triangulation directly, using the
randomized incremental
approach we have so
successfully applied to the
linear programming problem in
Chapter 4 and to the point
location problem in Chapter 6.

In Chapter 6 we found it
convenient to start with a large
rectangle containing the scene,
to avoid problems caused by
unbounded trapezoids. In the
same spirit we now start with a
large triangle that contains the
set P. We will add two extra
points p-1 and p-2 that,
together with the highest point
p0 of P, form a triangle
containing all the points. This
means we are now computing a
Delaunay triangulation of P
N{p-1, p-2 } instead of the
Delaunay triangulation of P.

Later we want to obtain the
Delaunay triangulation of P by
discarding p-1 and p-2,
together with all incident
edges. For this to work we
have to choose p-1 and p-2 far
enough away, so that they
don’t destroy any triangles in
the Delaunay triangulation of
P. In particular, we must ensure

they do not lie in any circle
defined by three points in P.
We postpone the details of this
to a later stage; first we have a
look at the algorithm.

The algorithm is randomized
incremental, so it adds the
points in random order and it
maintains a Delaunay
triangulation of the current
point set. Consider the addition
of a point pr. We first find the
triangle of the current
triangulation that contains pr—
how this is done will be
explained later—and we add
edges from pr to the vertices of
this triangle. If pr happens to
fall on an edge e of the
triangulation, we have to add
edges from pr to the opposite
vertices in the triangles sharing
e. Figure 9.7 illustrates these
two cases. We now have pr lies
in the interior of a triangle pr
falls on an edge remedy this,
we call a procedure
LegalizeEdge with each
potentially illegal edge. This
procedure replaces illegal
edges by legal ones through
edge flips. Before we come to
the details of this, we give a
precise description of the main
algorithm. It will be convenient
for the analysis to let P be a set
of n +1 points.

Algorithm
DELAUNAYTRIANGULATI
ON(P)

Input. A set P of n + 1 points in
the plane.

Output. A Delaunay
triangulation of P.

1. Let p0 be the
lexicographically highest point
of P, that is, the rightmost
among the points with largest
y-coordinate.

2. Let p_ 1 and p_2 be two
points in R2 sufficiently far
away and such that P is
contained in the triangle pOp_1
p_2.

3. Initialize T as the
triangulation consisting of the
single triangle pOp_1 p_2.

4, Compute a random
permutation p 1, p2pn of P \
{p0}.

5. forr*-1ton

6. do (* Insert pr into T: *)

7. Find a triangle pipjpk e
T containing pr.

8. if pr lies in the interior of
the triangle pipjpk

9. then Add edges from pr
to the three vertices of pipjpk,

thereby

splitting pipjpk into three
triangles.

10. LegaliZzeEDge(p , pip],
T)

11. legalizeEdge(pr, p]pk,
T)

12. legalizeEdge(pr, pkpi,
T)

13. else (* pr lies on an edge
of pipjpk, say the edge pip] *)

14. Add edges from pr to pk
and to the third vertex pi of the
other triangle that is incident to
pip], thereby splitting the two
triangles incident to pip] into
four triangles.

15. LegalizeEdge(pr, pipi,

T)
16. LegalizeEdge(pr, pip],
T)
17. LegalizeEdge(pr, pjpk,
T)

18. LegalizeEdge(pr, pkpi,
T

19. Discard p 1 and p 2
with all their incident edges

from T.

20. returnT

Next we discuss the details of
turning the triangulation we get
after line 9 (or line 14) into a
Delaunay triangulation. We
know from Theorem 9.8 that a
triangulation is a Delaunay
triangulation if all its edges are
legal. In the spirit of algorithm
LegalTriangulation, we
therefore flip illegal edges until
the triangulation is legal again.

The question that remains is
which edges may become
illegal due to the insertion of
pr. Observe that an edge pTpj
that was legal before can only
become illegal if one of the
triangles incident to it has
changed.

So only the edges of the new
triangles need to be checked.
This is done using the
subroutine LegalizeEdge,
which tests and possibly flips
an edge. If LegalizeEdge flips
an edge, other edges may
become illegal. Therefore
LegalizeEdge calls itself
recursively with such
potentially illegal edges.

LegalizeEdge(pr, pipi, T)

1. (* The point being
inserted is pr, and pipj is the
edge of T that may need to be
flipped. *)

2. if pp is illegal

3. then Let pipjpk be the
triangle adjacent to prpipj
along ppj.

4. (* Flip pipj: *) Replace
pTpj with prpk.

5. LegalizeEdge(pr, pipk,
T)

6. LegalizeEdge(pr, pkpi,
T

The test in line 2 whether an
edge is illegal can normally be
done by applying Lemma 9.4.
There are some complications
because of the presence of the
special points p-1 and p-2. We
shall come back to this later;
first we prove that the
algorithm is correct.

Figure 9.8
All edges created are incident
to pr

To ensure the correctness of
the algorithm, we need to prove
that no illegal edges remain

after all calls to LegalizeEdge
have been processed. From the
code of LegalizeEdge it is clear
that every new edge created
due to the insertion of pr is
incident to pr. Figure 9.8
illustrates this; the triangles
that are destroyed and the new
triangles are shown in grey.
The crucial observation
(proved below) is that every
new edge must be legal, so
there is no need to test them.
Together with the earlier
observation that an edge can
only become illegal if one of its
incident triangles changes, this
proves that the algorithm tests
any edge that may become
illegal. Hence, the algorithm is
correct. Note that, as in
Algorithm LegalTriangulation,
the algorithm cannot get into
an infinite loop, because every
flip makes the angle-vector of
the triangulation larger.

{p_2,p_1, pO0...., pr}.

Proof. Consider first the edges
prpi, prp], prpk (and perhaps
prpi) created by splitting pipipk
(and maybe pipipl). Since
pipipk is a triangle in the
Delaunay triangulation before
the addition of pr, the
circumcircle C of ppp contains

no point pt with t < r in its
interior. By shrinking C we can
find a circle C through pi and
pr contained in C.

Because C' ¢ C we know that
C' is empty. This implies that
prpi is an edge of the Delaunay
graph after the addition of pr.
The same holds for prp] and
prpk (and for prpi, if it exists).

Now consider an edge flipped
by LegalizeEdge. Such an edge
flip always replaces an edge
pip] of a triangle pipipl by an
edge prpi incident to pr. Since
pipipi was a Delaunay triangle
before the addition of pr and
because its circumcircle C
contains pr—otherwise pip]
would not be illegal—we can
shrink the circumcircle to
obtain an empty circle C' with
only pr and pi on its boundary.
Hence, prpl is an edge of the
Delaunay graph after the
addition. EQ

We have proved the
correctness of the algorithm.
What remains is to describe
how to implement two
important steps: how to find
the triangle containing the
point pr in line 7 of
DelaunayTriangulation, and

how to deal correctly with the
points p_1 and p_2 in the test
in line 2 in LegalizeEdge. We
start with the former issue.

To find the triangle containing
pr we use an approach quite
similar to what we did in
Chapter 6: while we build the
Delaunay triangulation, we also
build a point location structure
D, which is a directed acyclic
graph. The leaves of D
correspond to the triangles of
the current triangulation T, and
we maintain cross-pointers
between those leaves and the
triangulation.

The internal nodes of D
correspond to triangles that
were in the triangulation at
some earlier stage, but have
already been destroyed. The
point location structure is built
as follows. In line 3 we
initialize D as a DAG with a
single leaf node, which
corresponds to the triangle

pOp_1p_2.

Now suppose that at some
point we split a triangle pipipk
of the current triangulation into
three (or two) new triangles.
The corresponding change in D
Is to add three (or two) new

leaves to D, and to make the
leaf for pipipk into an internal
node with outgoing pointers to
those three (or two) leaves.
Similarly, when we replace two
triangles pkpipi and pipipl by
triangles pkpipl and pkplp] by
an edge flip, we create leaves
for the two new triangles, and
the nodes of pkpipi and ppp get
pointers to the two new leaves.
Figure 9.9 shows an example
of the changes in D caused by
the addition of a point. Observe
that when we make a leaf into
an internal node, it gets at most
three outgoing pointers.

Using D we can locate the next
point pr to be added in the
current triangulation. This is
done as follows. We start at the
root of D, which corresponds to
the initial triangle pOp_1 p_2.
We check the three children of
the root to see in which triangle
pr lies, and we descend to the
corresponding child. We then

Figure 9.9
The effect of inserting point pr
into triangle Al on the data

structure D (the part of D that
does not change is omitted in
the figure)

check the children of this node,
descend to a child whose
triangle contains pr, and so on,
until we reach a leaf of D. This
leaf corresponds to a triangle in
the current triangulation that
contains pr. Since the out-
degree of any node is at most
three, this takes linear time in
the number of nodes on the
search path, or, in other words,
in the number of triangles
stored in D that contain pr.

There is only one detail left,
namely how to choose p_1 and
p_2, and how to implement the
test of whether an edge is legal.
On the one hand, we have to
choose p_1 and p_2 to be far
away, because we don’t want
their presence to influence the
Delaunay triangulation of P.
One the other hand, we don’t
want to introduce the huge
coordinates needed for that. So
what we do is to treat these
points symbolically: we do not
actually assign coordinates to
them, but instead modify the
tests for point location and for
illegal edges such that they
work as if we had chosen the
points to be very far away.

In the following, we will say
that p = (xp,yp) is higher than q
= (xq,yq) if yp > yqoryp =yq
and xq > xp, and use the
(lexicographic) ordering on P
induced by this relation.

Let 1 1 be a horizontal line
lying below the entire set P,
and let t 2 be a horizontal line
lying above P. Conceptually,
we choose p_1 to lie on the line
| _1 sufficiently far to the right
that p_1 lies outside every
circle defined by three non-
collinear points of P, and such
that the clockwise ordering of
the points of P around p_1 is
identical to their
(lexicographic) ordering.

Next, we choose p_2 to lie on
the line t 2 sufficiently far to
the left that p_2 lies outside
every circle defined by three
non-collinear points of P
u{p_1}, and such that the
counterclockwise ordering of
the points of P u{p_1} around
p_2 is identical to their
(lexicographic) ordering.

The Delaunay triangulation of

Pu{p_1: p_2} consists of the
Delaunay triangulation of P,
edges connecting p_1 to every
point on the right convex hull
of P, edges connecting p_2 to
every point on the left convex
hull of P, and the one edge p_1
p_2. The lowest point of P and
the highest point p0 of P are
connected to both p_1 and p_2.

During the point location step,
we need to determine the
position of a point pj with
respect to the oriented line
from pi to pk. By our choice of
p_1 and p_2, the following
conditions are equivalent:

n pj lies to the left of the
line frompitop_1;

n pj lies to the left of the
line from p_2 to pf;

n pj is lexicographically
larger than pi.

It remains to explain how to
treat p 1 and p_2 when we
check whether an edge is
illegal. Let pp be the edge to be
tested, and let pk and pl be the
other vertices of the triangles
incident to pTpj (if they exist).

u pTpj is an edge of the
triangle pO p_ 1 p 2. These
edges are always legal.

n The indices i, j, k, | are
all non-negative. This is the
normal case; none of the points
involved in the test is treated
symbolically. Hence, pTpj is
illegal if and only if pl lies
inside the circle defined by pi,
pj, and pk.

n All other cases. In this
case, pipj is legal if and only if
min(k, 1) < min(i, j).

Only the last case requires
further justification. Since the
situation where pipjisp_1p_ 2
is handled in the first case, at
most one of the indices i and j
is negative. On the other hand,
either pk or pl is the point pr
that we have just inserted, and
so at most one of the indices k
and | is negative.

If only one of the four indices
IS negative, then this point lies
outside the circle defined by
the other three points, and the
method is correct.

Otherwise, both min(i,]) and
min(k, 1) are negative, and the
fact that p_2 lies outside any
circle defined by three points in
Pu {p_] } implies that the
method is correct.

9.4 The Analysis

We first look at the structural
change generated by the
algorithm. This is the number
of triangles created and deleted
during the course of the
algorithm. Before we start the
analysis, we introduce some
notation: Pr := {p1,..., pr}

and DSr =
Dg({p_2,p_1,p0}UPr).

Lemma 9.11 The expected
number of triangles created by
algorithm DELAU-
NAYTRIANGULATION is at
most 9n + 1.

Proof. In the beginning, we
create the single triangle pOp_1
p_2. In iteration r of the
algorithm, when we insert pr,
we first split one or two
triangles, creating three or four
new triangles. This splitting
creates the same number of
edges in D3r, namely prpi,
prp], prpk (and maybe prpl).
Furthermore, for every edge
that we flip in procedure
LegalizeEdge, we create two
new triangles. Again, the
flipping creates an edge of D3r
incident to pr. To summarize: if
after the insertion of pr there
are k edges of Dgr incident to
pr, then we have created at

most 2(k _ 3) +3 =2k 3 new
triangles. The number k is the
degree of pr in D3r; we denote
this degree by deg(pr, DGr).
degree of pr, over all possible
permutations of the set P? As
in Chapter 4 and 6 we use
backwards analysis to bound
this value. So, for the moment,
we fix the set Pr. We want to
bound the expected degree of
the point pr, which is a random
element of the set Pr.

By Theorem 7.3, the Delaunay
graph Dgr has at most 3(r + 3)
_ 6 edges. Three of these are
the edges of pOp_1 p_ 2, and
therefore the total degree of the
vertices in Pr is less than 2[3(r
+ 3) _ 9]= 6r. This means that
the expected degree of a
random point of Pr is at most 6.
Summarizing the above, we
can bound the number of
triangles created in step r as
follows.

E [number of triangles created
in step r] < E[2deg(pr, DGr) _
3]

= 2E[deg(pr,DSr)] _ 3

<26 3=9

The total number of created
triangles is one for the triangle
pOp_1 p_2 that we start with,
plus the number of triangles

created in each of the insertion
steps. Using linearity of
expectation, we get that the
expected total number of
created triangles is bounded by
1+ 9n. EU

We now state the main result.

Theorem 9.12 The Delaunay
triangulation of a set P of n
points in the plane
DELAUNAY
TRIANGULATIONS can be
computed in O(nlogn) expected
time, using O(n) expected
storage.

Proof. The correctness of the
algorithm follows from the
discussion above. As for the
storage requirement, we note
that only the search structure D
could use more than linear
storage. However, every node
of D corresponds to a triangle
created by the algorithm, and
by the previous lemma the
expected number of these is
O(n).

To bound the expected running
time we first ignore the time
spent in the point location step
(line 7). Now the time spent by
the algorithm is proportional to
the number of created triangles.

From the previous lemma we
can therefore conclude that the
expected running time, not
counting the time for point
location, is O(n).

It remains to account for the
point location steps. The time
to locate the point pr in the
current triangulation is linear in
the number of nodes of D that
we visit. Any visited node
corresponds to a triangle that
was created at some earlier
stage and that contains pr.

If we count the triangle of the
current triangulation
separately, then the time for
locating pr is O(1) plus linear
time in the number of triangles
that were present at some
earlier stage, but have been
destroyed, and contain pr.

A triangle pipipk can be
destroyed from the
triangulation for one of two
reasons:

n A new point pl has been
inserted inside (or on the
boundary of) pipipk, and ppp
was split into three (or two)
subtriangles.

u An edge flip has
replaced pipipk and an adjacent
triangle pipipl by the pair
pkpipl and pkp]pl.

In the first case, the triangle
pip]pk was a Delaunay triangle
before pl was inserted.

In the second case, -either
pipipk was a Delaunay triangle
and pl was inserted, or pipipl
was a Delaunay triangle and pk
was inserted. If pipipl was the
Delaunay triangle, then the fact
that the edge pip] was flipped
means that both pk and pr lie
inside the circumcircle of

pipipl.

In all cases we can charge the
fact that triangle pipipk was
visited to a Delaunay triangle
A that has been destroyed in
the same stage as pipipk, and
such that the circumcircle of A
contains pr. Denote the subset
of points in P that lie in the
circumcircle of a given triangle
A by K(A).

In the argument above the visit
to a triangle during the location
of pr is charged to a triangle A
with pr e K(A). It is easy to see
that a triangle A can be charged
at most once for every one of
the points in K(A). Therefore
the total time for the point
location steps is

where the summation is over
all Delaunay triangles A
created by the algorithm. We
shall prove later that the
expected value of this sum is
O(nlogn). This proves the
theorem. ED

It remains to bound the
expected size of the sets K(A).
If A is a triangle of the
Delaunay triangulation D3r,
then what would we expect
card(K(A)) to be?

For r = 1 we would expect it to
be roughly n, and for r = n we
know that it is zero. What
happens in between? The nice
thing about randomization is
that it “interpolates” between
those two extremes. The right
intuition would be that, since
Pr is a random sample, the
number of points lying inside
the circumcircle of a triangle A
e DGr is about O(n/r). But be
warned: this is not really true
for all triangles in Dagr.
Nevertheless, the sum in
expression (9.1) behaves as if it
were true.

In the remainder of this section
we will give a quick proof of
this fact for the case of a point

set in general position. The
result is true for the general
case as well, but to see that we
have to work a little bit harder,
SO we postpone that to the next
section, where we treat the
problem in more generality.

Lemma 9.13 If P is a point set
in general position, then

where the summation is over
all Delaunay triangles A
created by the algorithm.

Proof. Since P is in general
position, every subset Pr is in
general position. This implies
that the triangulation after
adding the point pr is the
unique triangulation DGr. We
denote the set of triangles of
Dgr by Tr. Now the set of
Delaunay triangles created in
stage r equals Tr \ Tr_1 by
definition. Hence, we can
rewrite the sum we want to
bound as

For a point q, let k(Pr, Q)
denote the number of triangles
A e Tr such that q e K(A), and
let K(Pr, q, pr) be the number of
triangles A e Tr such that not

only g e K(A) but for which we
also have that pr is incident to
A. Recall that any Delaunay
triangle created in stage r is
incident to pr, so we have

For the moment, we fix Pr. In
other words, we consider all
expectations to be over the set
of permutations of the set P
where Pr is equal to a fixed set
P*. The value of k(Pr, q, pr)
then depends only on the
choice of pr. Since a triangle A
e Tr is incident to a random
point p e P* with probability at
most 3/r, we get

If we sum this over all g e P\
Pr and use (9.2), we get

Every g e P \ Pr is equally
likely to appear as pr+1, and so
we have
We can substitute this into
(9.3), and get

What is k(Pr, pr+1)? It is the
number of triangles A of Tr
that have pr+l1 e K(A). By the
criterion from Theorem 9.6 (i),
these triangles are exactly the
triangles of Tr that will be
destroyed by the insertion of
pr+l. Hence, we can rewrite

the previous expression as

Theorem 9.1 shows that the
number of triangles in Tm is
precisely 2(m + 3) _

2 _3=2m+ 1.

Therefore, the number of
triangles destroyed by the
insertion of point pr+l is
exactly two less than the
number of triangles created by
the insertion of pr+1, and we
can rewrite the sum as

Until now we considered Pr to
be fixed. At this point, we can
simply take the average over
all choices of Pr ¢ P on both
sides of the inequality above,
and find that it also holds if we
consider the expectation to be
over all possible permutations
of the set P.

We already know that the
number of triangles created by
the insertion of pr+l is
identical to the number of
edges incident to pr+1 in Tr+1,
and that the expected number
of these edges is at most 6. We
conclude that

Summing over r proves the
lemma. 0

9.5* A Framework for
Randomized Algorithms

Up to now we have seen three
randomized incremental
algorithms in this book: one for
linear programming in Chapter

4, one for computing a
trapezoidal map in Chapter 6,
and one for computing a
Delaunay triangulation in this
chapter. (We will see one more
in Chapter 11.) These
algorithms, and most other
randomized incremental
algorithms in the
computational geometry
literature, all work according to
the following principle.

Suppose the problem is to
compute some geometric
structure T(X), defined by a set
X of geometric objects. (For
instance, a Delaunay
triangulation defined by a set
of points in the plane.) A
randomized incremental
algorithm does this by adding
the objects in X in random
order, meanwhile maintaining
the structure T. To add the next
object, the algorithm first finds
out where the current structure
has to be changed because
there is a conflict with the
object—the location step—and
then it updates the structure
locally—the update step.
Because all randomized
incremental algorithms are so
much alike, their analyses are
quite similar as well. To avoid
having to prove the same
bounds over and over again for
different problems, an

axiomatic framework has been
developed that captures the
essence of randomized
incremental algorithms. This
framework—called a
configuration space—can be
used to prove ready-to-use
bounds for the expected
running time of many
randomized incremental
algorithms. (Unfortunately, the
term ‘“‘configuration space” is
also used in motion planning,
where it means something
completely different—see
Chapter 13.) In this section we
describe this framework, and
we give a theorem that can be
used to analyze any
randomized incremental
algorithm that fits into the
framework. For instance, the
theorem can immediately be
applied to prove Lemma 9.13,
this time without assuming that
P has to be in general position.

A configuration space s
defined to be a four-tuple (X, n,
D, K). Here X is the input to
the problem, which is a finite
set of (geometric) objects; we
denote the cardinality of X by
n. The set n is a set whose
elements are called
configurations. Finally, D and
K both assign to every

configuration A e n a subset of
X, denoted D(A) and K(A)
repectively. Elements of the set
D(A) are said to define the
configuration A, and the
elements of the set K(A) are
said to be in conflict with, or to
kill, A. The number of
elements of K(A) is called the
conflict size of the
configuration A. We require
that (X, n, D, K) satisfies the
following conditions.

n The number d =
max{card(D(A)) | A e n} is a
constant. We call this number
the maximum degree of the
configuration space. Moreover,
the number of configurations
sharing the same defining set
should be bounded by a
constant.

m We have D(A) n K(A) =
0 for all configurations A e n.
A configuration A is called
active over a subset S ¢ X if
D(A) is contained in S and
K(A) is disjoint from S. We
denote the set of configurations
active over S by T(S), so we
have

T(S) :={Aen:D(A)cS and
K(A)n'S = (0}.

The active configurations form
the structure we want to
compute. More precisely, the

goal is to compute T(X).

Before we continue our
discussion of this abstract
framework, let’s see how the
geometric structures we have
met so far fit in.

Half-plane intersection. In this
case the input set X is a set of
half-planes in the plane. We
want to define n, D, and K in
such a way that T(X) is what
we want to compute, namely
the intersection of the half-
planes in X.

We can achieve this as follows.
The set n of configurations
consists of all the intersection
points of the lines bounding the
half-planes in X. The defining
set D(A) of a configuration A e
n consists of the two lines
defining the intersection, and
the killing set K(A) consists of
all half-planes that do not
contain the intersection point.
Hence, for any subset S ¢ X,
and in particular for X itself,
T(S) is the set of vertices of the
common intersection of the
half-planes in S.

Trapezoidal maps.

Here the input set X is a set of
segments in the plane. The set
n of configurations contains all
trapezoids appearing in the
trapezoidal map of any S ¢ X.
The defining set D(A) of a
configuration A is the set of
segments that are necessary to
define A. The killing set K(A)
of a trapezoid A is the set of
segments that intersect A. With
these definitions, T(S) s
exactly the set of trapezoids of
the trapezoidal map of S.

Delaunay Triangulation. The
input set X is a set of points in
general position in the plane.
The set n of configurations
consists of triangles formed by
three (non-collinear) points in
X. The defining set D(A)
consists of the points that form
the vertices of A, and the
killing set K(A) is the set of
points lying inside the
circumcircle of A. By Theorem
9.6, T(S) is exactly the set of
triangles of the unique
Delaunay triangulation of S.

As stated earlier, the goal is to
compute the structure T(X).
Randomized incremental
algorithms do this by
computing a random

permutation x1,x2,...,xn of the
objects in X and then adding
the objects in this order,
meanwhile maintaining T(Xr),
where Xr = {x1; x2,... ,xr}.
The fundamental property of
configuration ~ spaces that
makes this possible is that we
can decide whether or not a
configuration A appears in
T(Xr) by looking at it locally—
we only need to look for the
defining and killing objects of
A. In particular, T(Xr) does not
depend on the order in which
the objects in Xr were added.

For instance, a triangle A is in
the Delaunay triangulation of S
if and only if the vertices of A
are in S, and no point of S lies
in the circumcircle of A.

The first thing we usually did
when we analyzed a
randomized incremental
algorithm was to prove a bound
on the expected structural
change—see for instance
Lemma 9.11. The next theorem
does the same, but now in the
abstract configuration-space
framework.

Theorem 9.14 Let (X, n, D, K)
be a configuration space, and
let T and Xr be defined as
above. Then the expected

number of configurations in
T(Xr) \ T(Xr_1) is at most

where d is the maximum
degree of the configuration
space.

Proof. As in previous occasions
where we wanted to bound the
structural change, we use
backwards analysis: instead of
trying to argue about the
number of configurations that
appear due to the addition of xr
into Xr_ 1, we shall argue
about the number of
configurations that disappear
when we remove xr from Xr,
To this end we temporarily let
Xr be some fixed subset X* c
X of cardinality r. We now
want to bound the expected
number of configurations A e
T(Xr) that disappear when we
remove a random object xr
from Xr. By definition of T,
such a configuration A must
have xr e D(A). Since there are
at most d ¢ card(T(Xr)) pairs
(x, A) with A e T(Xr) and x e
D(A), we have

Hence, the expected number of
configurations disappearing
due to the removal of a random
object from Xr is at most -
card(T(Xr)). In this argument,
the set Xr was a fixed subset
X* ¢ X of cardinality r. To

obtain the general bound, we
have to average over all
possible subsets of size r,
which gives a bound of d E
[card(T (Xr))]. m

This theorem gives a generic
bound for the expected size of
the structural change during a
randomized incremental
algorithm. But what about the
cost of the location steps? In
many cases we will need a
bound of the same form as in
this chapter, namely we need to
bound

where the summation is over
all configurations A that are
created by the algorithm, that
is, all configurations that
appear in one of the T(Xr).
This bound is given in the
following theorem.

Theorem 9.15 Let (X, n, D, K)
be a configuration space, and
let T and Xr be defined as
above. Then the expected value
of

where the summation is over
all configurations A appearing
in at least one T(Xr) with 1 <r
<n, is at most

where d is the maximum
degree of the configuration
space.

Proof. We can follow the proof
of Lemma 9.13 quite closely.

We first rewrite the sum as

Next, let k(Xr,y) denote the
number of configurations A e
T(Xr) such that y e K(A), and
let k(Xr, y, xr) be the number
of configurations A e T(Xr)
such that not only y e K(A) but
for which we also have xr e
D(A). Any new configuration
appearing due to the addition
of xr must have xr e D(A). This
implies that

We now fix the set Xr. The
expected value of k(Xr,y,xr)
then depends only on the
choice of xr e Xr. Since the
probability that y e D(A) for a
configuration

A e T(Xr) is at most d/r, we
have

If we sum this over all y e X \

Xr and use (9.4), we get

On the other hand, every y e X
\ Xr is equally likely to appear
as xr+1, so E[k(XTr,

Substituting this into (9.5)
gives

Now observe that k(Xr, xr+1)

Is the number of configurations
A of T(Xr) that will be
destroyed in the next stage,
when xr+1 is inserted. This
means we can rewrite the last
expression as

Unlike in the proof of Lemma
9.13, however, we cannot
simply bound the number of
configurations destroyed in
stage r + 1 by the number of
configurations created at that
stage, because that need not be
true in a general configuration
space. Hence, we proceed
somewhat differently.

First we observe that we can
take the average over all
choices of Xr on both sides of
(9.6) and find that it also holds
if the expectation is over all
permutations of X. Next, we
sum over all r, and rewrite the
sum as follows:

where the summation on the
right hand side is over all
configurations A that are
created and later destroyed by
the algorithm, and where j(A)
denotes the stage when
configuration A is destroyed.
Let i(A) denote the stage when
the configuration A is created.

Since i(A) <j(A) _1, we have

If we substitute this into (9.7),
we see that

The right hand side of this
expression is at most

(the difference being only those
configurations that are created
but never de-stroyed) and so
we have

By Theorem 9.14, we get the
bound we wanted to prove:

This finishes the analysis in the
abstract setting. As an example,
we will show how to apply the
results to our randomized
incremental algorithm for
computing the Delaunay
triangulation. In particular, we
will prove that

where the summation is over
all triangles A created by the
algorithm, and where K(A) is
the set of points in the
circumcircle of the triangle.

Unfortunately, it seems
impossible to properly define a
configuration space whose
configurations are triangles
when the points are not in
general position. Therefore we

shall choose the configurations
slightly differently.

Let P be a set of points in the
plane, not necessarily in
general position. Let Q := {p0,
p—1, p_2} denote the set of
three points we used to start the
construction. Recall that Po is
the lexicographically largest
point from P, while points p_1
and p-2 were chosen such that
they do not destroy any
Delaunay edges between points
in P. We set X := P\{p0}.
Every triple A = (pi, pj, pk) of
points in X u Q that do not lie
on a line defines a
configuration with D(A) :=
{pi,pj,pk}nX and K(A) is the
set of points of X that lie either
in the interior of the
circumcircle of the triangle pi p
j pk or on the circular arc on
the circumcircle from pi to pk
containing pj.

We call such a configuration A
a Delaunay corner of X,
because A is active over S ¢ X
if and only if pi, pj, and pk are
consecutive points on the
boundary of one face of the
Delaunay graph DS(Q u S).
Note that any set of three non-
collinear points defines three
different configurations.

The important observation is
that whenever
DelaunayTriangulation creates
a new triangle, this triangle is
of the form piprpj, where pr is
the point inserted in this stage,
and prp and prpj are edges of
the Delaunay graph DS(Q
uPr)—see Lemma 9.10. It
follows that when the triangle
piprpj is created, the triple
(pj,pr,pi) is a Delaunay corner
of DS(Q uPr) and, hence, it is
an active configuration over the
set Pr. The set K(A) defined for
this configuration contains all
points contained in the
circumcircle of the triangle
piprpj. We can therefore bound
the original sum by

where the sum is over all
Delaunay corners A that appear
in some intermediate Delaunay
graph DS (Q u Pr).

Now Theorem 9.15 applies.
How many Delaunay corners
are there in the
TRIANGULATIONS

Delaunay graph of S u Q? The
worst case is when the
Delaunay graph IS a
triangulation. If S contains r
points, then the triangulation
has 2(r + 3) _ 5 triangles, and

therefore 6(r + 3) _15=6r+ 3
Delaunay corners. It follows
from Theorem 9.15 that
This finally completes the
proof of Theorem 9.12.

9.6 Notes and Comments

The problem of triangulating a
set of points is a topic in
computational geometry that is
well known outside this field.
Triangulations of point sets in
two and more dimensions are
of paramount importance in
numerical analysis, for instance
for finite element methods, but
also in computer graphics. In
this chapter we looked at the
case of triangulations that only
use the given points as vertices.
If additional points—so-called
Steiner points—are allowed,
the problem is also known as
meshing and is treated in more
detail in Chapter 14.

Lawson [244] proved that any
two triangulations of a planar
point set can be transformed
into each other by flipping
edges. He later suggested
finding a good triangulation by
iteratively ~ flipping edges,

where such an edge-flip
Improves some cost function of
the triangulation [245].

It had been observed for some
time that triangulations that
lead to good interpolations
avoid long and skinny triangles
[38]. The result that there is—if
we ignore degenerate cases—
only one locally optimal
triangulation with respect to the
angle-vector, namely the
Delaunay triangulation, is due
to Sibson [360].

Looking only at the angle-
vector completely ignores the
height of the data points, and is
therefore also called the data-
independent approach. A good
motivation for this approach is
given by Rippa [328], who
proves that the Delaunay
triangulation IS the
triangulation that minimizes
the roughness of the resulting
terrain, no matter what the
actual height data is. Here,
roughness is defined as the
integral of the square of the L2-
norm of the gradient of the
terrain. More recent research
tries to find improved
triangulations by taking the
height information into
account. This data-dependent
approach was first proposed by
Dyn et al. [154], who suggest

different cost criteria for
triangulations, which depend
on the height of the data points.

Interestingly, they compute
their improved triangulations
by starting with the Delaunay
triangulation and iteratively
flipping edges. The same
approach is taken by Quak and
Schumaker [325], who
consider piecewise cubic
interpolation, and Brown [76].
Quak and Schumaker observe
that their triangulations are
small improvements compared
to the Delaunay triangulation
when they try to approximate
smooth surfaces, but that they
can be drastically different for
non-smooth surfaces.

More references relevant to
Delaunay triangulations as the
dual of Voronoi diagrams can
be found in Chapter 7.

The randomized incremental
algorithm we have given here
Is due to Guibas Section 9.7 et
al. [196], but our analysis of
£Acard(K(A)) IS from
Mulmuley’s book [290]. The
argument that extends the
analysis to the case of points in

degenerate position is new.
Alternative randomized
algorithms were given by
Boissonnat et al. [69, 71], and
by Clarkson and Shor [133].

Various geometric graphs
defined on a set of points P
have been found to be

subgraphs of the Delaunay
triangulation of P. The most
important one is probably the
Euclidean minimum spanning
tree (EMST) of the set of
points [349]; others are the
Gabriel graph [186] and the
relative neighborhood graph
[374].

We treat these geometric
graphs in the exercises.

Another important
triangulation is the minimum
weight triangulation, that is, a
triangulation whose weight is
minimal (where the weight of a
triangulation is the sum of the
lengths of all edges of the

triangulation) [12, 42, 146,
147].
Determining a minimum

weight triangulation among all
triangulations of a given point
set was recently shown to be

RGOS [291).

9.7 Exercises

9.1 In this exercise we look

at the number of different
triangulations that a set of n
points in the plane may allow.

a. Prove that no set of n
points can be triangulated in
more than 2(n) ways.

b. Prove that there are sets
of n points that can be
triangulated in at least 2- 2v'-
different ways.

9.2 The degree of a point in
a triangulation is the number of
edges incident to it. Give an
example of a set of n points in
the plane such that, no matter
how the set is triangulated,
there is always a point whose
degreeisn- 1.

9.3 Prove that any two
triangulations of a planar point
set can be transformed into
each other by edge flips. Hint:
Show first that any two
triangulations of a convex
polygon can be transformed
into each other by edge flips.

9.4 Prove that the smallest
angle of any triangulation of a
convex polygon whose vertices
lie on a circle is the same. This
implies that any completion of
the Delaunay triangulation of a

set of points maximizes the
minimum angle.

9.5 a. Given four points p, g,
r, s in the plane, prove that
point s lies in the

interior of the circle through p,
g, and r if and only if the
following condition holds.
Assume that p, q, r form the
vertices of a triangle in
clockwise order.

b. The determinant test of part
a. can be used to test if an edge
in a triangulation is legal. Can
you come up with an
alternative way to

implement this test? Discuss
the advantages and/or
disadvantages of your method
compared to the determinant
test.

96 We have described
algorithm
DELAUNAYTRIANGULATI
ON by calling a recursive
procedure LEGALIZEEDGE.
Give an iterative version of this
procedure, and discuss the
advantages and/or
disadvantages of your
procedure over the recursive
one.

9.7 Prove that all edges of

DS(Pr) that are not in DS(Pr_1)
are incident to pr. In other
words, the new edges of
DS(Pr) form a star as in Figure

9.8. Give a direct proof,
without referring to algorithm
DelaunayTriangu- LATION.

9.8 Let P be a set of n points
in general position, and let g e
P be a point inside the convex
hull of P. Let pi, p j, pk be the
vertices of a triangle in the
Delaunay triangulation of P
that contains g. (Since g can lie
on an edge of the Delaunay
triangulation, there can be two
such triangles.) Prove that gpi,
gpj, and qpk are edges of the
Delaunay triangulation of

P u{q}.

9.9 The algorithm given in
this chapter is randomized, and
it computes the Delaunay
triangulation of a set of n
points in O(nlog n) expected
time. Show that the worst-case
running time of the algorithm
is Q(n2).

9.10 The algorithm given in
this chapter uses two extra
points p—1 and p_2 to start the
construction of the Delaunay
triangulation. These points
should not lie in any circle
defined by three input points,
and so far away that they see
the points of P in their
lexicographic order. These

conditions were enforced by
implementing operations
involving these points in a
special way—see page 204.
Compute explicit coordinates
for the extra points such that
this special implementation is
not needed. Is this a better
approach?

9.11 A Euclidean minimum
spanning tree (EMST) of a set
P of points in the plane is a tree
of minimum total edge length
connecting all the points.
EMST’s are interesting in
applications where we want to
connect sites in a planar
environment by
communication lines (local
area networks), roads,
railroads, or the like.

a. Prove that the set of
edges of a Delaunay
triangulation of P contains an
EMST for P.

b. Use this result to give an
O(nlogn) algorithm to compute
an EMST for P.

9.12 The traveling salesman
problem (TSP) is to compute a
shortest tour visiting all points
in a given point set. The
traveling salesman problem is
NP-hard. Show how to find a
tour whose length is at most
two times the optimal length,
using the EMST defined in the
previous exercise.

9.13 The Gabriel graph of a
set P of points in the plane is
defined as follows: Section 9.7
Two points p and g are
connected by an edge of the
Gabriel graph if and
EXERCISES only if the disc
with diameter pg does not
contain any other point of P.

a. Prove that Dg(P)
contains the Gabriel graph of P.
b. Prove that p and q are
adjacent in the Gabriel graph of
P if and only if the Delaunay
edge between p and q intersects
its dual VVoronoi edge.

C. Give an O(nlogn) time
algorithm to compute the
Gabriel graph of a set of n
points.

9.14 The relative
neighborhood graph of a set P
of points in the plane is defined
as follows: Two points p and g
are connected by an edge of the
relative neighborhood graph if
and only if

a. Given two points p and
g, let lune(p, q) be the moon-
shaped region formed as the
intersection of the two circles
around p and g whose radius is
d(p,q). Prove that p and q are
connected in the relative
neighborhood graph if and only
if lune(p, q) does not contain
any point of P in its interior.

b. Prove that Dg(P)
contains the relative
neighborhood graph of P.

C. Design an algorithm to
compute the relative
neighborhood graph of a given
point set.

9.15 Prove the following
relationship between the edge
sets of an EMST, of the
relative neighborhood graph
(RNG), the Gabriel graph
(GG), and the Delaunay graph
(Dg) of a point set P.

EMST ¢ RNG ¢ GG ¢ Dg.

(See the previous exercises for
the definition of these graphs.)

9.16 A fc-clustering of a set P
of n points in the plane is a
partitioning of P into fc non-
empty subsets P1,...Pfc.
Define the distance between
any pair Pi, Pj of clusters to be
the minimum distance between
one point from Pi and one point
from Pj, that is,

We want to find a fc-clustering
(for given fc and P) that
maximizes the minimum
distance between clusters.

a. Suppose the mimimum
distance between clusters is
achieved by points p e Pi and g
e Pj. Prove that pq is an edge of
the Delaunay triangulation ofP.
b. Give an O(nlog n) time
algorithm to compute a fc-
clustering maximizing the
minimum distance between

clusters.

9.17 The weight of a

triangulation is the sum of the
lengths of all edges of the
triangulation. A minimum
weight triangulation is a
triangulation whose weight is
minimal. Disprove the
conjecture that the Delaunay
triangulation is a minimum
weight triangulation.

9.18* Give an example of a
geometric configuration space
(X, n, D, K) where T(Xr) \
T(Xr+1) can be arbitrarily large
compared to T(Xr+1) \ T(Xr).

9.19* Apply configuration
spaces to analyze the
randomized incremental algo-
rithm of Chapter 6.

The output of oil wells is a
mixture of several different
components, and the
proportions of these
components vary between
different sources. This can
sometimes be exploited: by
mixing together the output of
different wells, one can
produce a mixture with
proportions that are
particularly favorable for the
refining process.

Let’s look at an example. For
simplicity we assume that we
are only interested in two of
the components—call them A
and B—of our product.
Assume that we are given a
mixture li with 10% of
component A and 35% of
component B, and another
mixture with 16% of A and
20% of B. Assume further
that what we really need is a
mixture that contains 12% of
A and 30% of B. Can we
produce this mixture from the
given ones? Yes, mixing |1
and |2 in the ratio 2 : 1 gives
the desired product. However,
it is impossible to make a
mixture of |1 and |2 that
contains 13% of A and 22%
of B. But if we have a third
mixture |3 containing 7% of
A and 15% of B, then mixing
|1, |2, and |3 in the ratio of 1:
3 : 1 will give the desired
result.

What has all this to do with
geometry? This becomes
clear when we represent the
mixtures |1, |2, and |3 by
points in the plane, namely by
pl = (0.1,0.35), p2 :=
(0.16,0.2), and p3 =
(0.07,0.15). Mixing |1 and in
the ratio 2 : 1 gives the
mixture represented by the
point g := (2/3)pl + (1/3)p2.
This is the point on the
segment prp2 such that
dist(p2, q): dist(q, p1) = 2: 1,
where dist(.,.) denotes the
distance between two points.
More generally, by mixing |1
and in varying ratios, we can
produce the mixtures
represented by any point on
the line segment pl p2. If we
start with the three base
mixtures |1, |2, and |3, we can
produce any point in the
triangle pl p2p3. For
instance, mixing |1, |2, and |3
in the ratio 1:3:1 gives the
mixture represented by the
point (1/5)pl + (3/5)p2 +
(1/5)p3 = (0.13,0.22).

What happens if we don’t
have three but n base
mixtures, for some n > 3,
represented by points
pl;p2,...,pn? Suppose that we
mix them inthe ratio 11 : 12
: mmm: In. Let L = 1t=1 [j
and let Ai := li/L. Note that

The mixture we get by

mixing the base mixtures in
the given ratio is the one
represented by

Such a linear combination of
the points pi where the xi
satisfy the conditions stated
above—each xi is non-
negative, and the sum of the
Xi is one—is called a convex
combination. In Chapter 1 we
defined the convex hull of a
set of points as the smallest
convex set containing the
points or, more precisely, as
the inter-section of all
convex sets containing the
points. One can show that the
convex hull of a set of points
Is exactly the set of all
possible convex combinations
of the points. We can
therefore test whether a
mixture can be obtained from
the base mixtures by
computing the convex hull of
their representative points,
and checking whether the
point representing the mixture
lies inside it.

What if there are more than
two interesting components in
the mixtures? Well, what we
have said above remains true;
we just have to move to a
space of higher dimension.
More precisely, if we want to
take d components into
account we have to represent
a mixture by a point in d-

dimensional space. The
convex hull of the points
representing the base
mixtures, which is a convex
polytope, represents the set of
all possible mixtures.

Convex hulls—in particular
convex hulls in 3-dimensional
space—are used in various
applications. For instance,
they are used to speed up
collision detection in
computer animation. Suppose
that we want to check
whether two objects P1 and
P2 intersect. If the answer to
this question is negative most
of the time, then the
following strategy pays off.
Approximate the objects by
simpler objects P1 and P2
that contain the originals. If
we want to check whether P1
and P2 intersect, we first
check whether P1 and P2
intersect; only if this is the
case do we need to perform
the—supposedly more
costly—test on the original
objects.

There is a trade-off in the
choice of the approximating
objects. On the one hand, we
want them to be simple so
that intersection tests are
cheap. On the other hand,
simple approximations most
likely do not approximate the
original objects very well, so
there is a bigger chance we

have to test the originals.
Bounding spheres are on one
side of the spectrum:
intersection tests for spheres
are quite simple, but for many
objects spheres do not
provide a good
approximation. Convex hulls
are more on the other side of
the spectrum: intersection
tests for convex hulls are
more complicated than for
spheres—but still simpler
than for non-convex
objects—but convex hulls can
approximate most objects a
lot better.

11.1 The Complexity of
Convex Hulls in 3-Space

In Chapter 1 we have seen
that the convex hull of a set P
of n points in the plane is a
convex polygon whose
vertices are points in P.
Hence, the convex hull has at
most n vertices. In 3-
dimensional space a similar
statement is true: the convex
hull of a set P of n points is a
convex polytope whose
vertices are points in P and,
hence, it has at most n
vertices. In the planar case
the bound on the number of
vertices immediately implies
that the complexity of the
convex hull is linear, since
the number of edges of a
planar polygon is equal to the
number of wvertices. In 3-

space this is no longer true;
the number of edges of a
polytope can be higher than
the number of vertices. But
fortunately the difference
cannot be too large, as
follows from the following
theorem on the number of
edges and facets of convex
polytopes. (Formally, a facet
of a convex polytope is
defined to be a maximal
subset of coplanar points on
its boundary. A facet of a
convex polytope IS
necessarily a convex polygon.
An edge of a convex polytope
is an edge of one of its
facets.)

Theorem 11.1 Let P be a
convex polytope with n
vertices. The number of edges
of P is at most 3n — 6, and
the number of facets of P is at
most 2n — 4.

Proof. Recall that Euler’s
formula states for a connected
planar graph with n nodes, ne
arcs, and nf faces the
following relation holds:
n—ne+nf=2,

Since we can interpret the
boundary of a convex
polytope as a planar graph—
see Figure 11.1—the same
relation holds for the numbers
of vertices, edges, and facets
in a convex polytope. (In fact,
Euler’s formula was
originally stated in

Figure 11.1

A cube interpreted as a planar
graph: note that one facet
maps to the unbounded face
of the graph

terms of polytopes, not in
terms of planar graphs.)
Every face of the graph
corresponding to P has at
least three arcs, and every arc
Is incident to two faces, so we
have 2ne > 3nf. Plugging this
into Euler’s formula we get
n+nf—2>3nf/2,

so nf < 2n — 4. Applying
Euler’s formula once more,
we see that ne < 3n — 6.

For the special case that every
facet is a triangle—the case
of a simplicial polytope—the
bounds on the number of
edges and facets of an n-
vertex polytope are exact,
because then 2ne = 3nf. ED
Theorem 11.1 also holds for
non-convex polytopes whose
so-called genus is zero, that
IS, polytopes without holes or
tunnels; for polytopes of
larger genus similar bounds
hold. Since this chapter deals
with convex hulls, however,
we refrain from defining what
a (non-convex) polytope
exactly is, which we would
need to do to prove the
theorem in the non-convex
case. 245

If we combine Theorem 11.1
with the earlier observation
that the convex hull of a set
of points in 3-space is a
convex polytope whose
vertices are points in P, we
get the following result.

Corollary 11.2 The
complexity of the convex hull
of a set of n points in three
dimensional space is O(n).
11.2 Computing Convex
Hulls in 3-Space

Let P be a set of n points in 3-
space. We will compute
CH(P), the convex hull of P,
using a randomized
incremental algorithm,
following the paradigm we
have met before in Chapters
4,6,and 9.

The incremental construction
starts by choosing four points
in P that do not lie in a
common plane, so that their
convex hull is a tetrahedron.
This can be done as follows.
Let p1 and p2 be two points
in P. We walk through the set
P until we find a point p3 that
does not lie on the line
through pl and p2. We
continue searching P until we
find a point p4 that does not
lie in the plane through pl,
p2, and p3. (If we cannot find

four such points, then all
points in P lie in a plane. In
this case we can use the
planar convex hull algorithm
of Chapter 1 to compute the
convex hull.)

Next we compute a random
permutation p5,... , pn of the
remaining points. We will
consider the points one by
one in this random order,
maintaining the convex hull
as we go. For an integer r > 1,
let Pr := {pl,..,pr}. In a
generic step of the algorithm,
we have to add the point pr to
the convex hull of Pr-1, that
iIs, we have to transform
CH(Pr-1) into CH(Pr). There
are two cases.

n If pr lies inside CH(Pr-
1), or on its boundary, then
CH(Pr) = CH(Pr-1), and there
is nothing to be done.

Figure 11.2 The horizon of a
polytope

Now suppose that pr lies
outside CH(Pr-1). Imagine
that you are standing at pr,
and that you are looking at
CH(Pr-1). You will be able to
see some facets of CK(Pr—
1)—the ones on the front
side—but others will be
invisible because they are on
the back side. The visible

facets form a connected
region on the surface of
CH(Pr—1), called the visible
region of pr on CH(Pr—1),
which is enclosed by a closed
curve consisting of edges of
CH(Pr—1). We call this
curve the horizon of pr on
CK(Pr— 1). As you can see
in Figure 11.2, the projection
of the horizon is the boundary
of the convex polygon
obtained by projecting
CK(Pr—1) onto a plane, with
pr as the center of projection.
What exactly does “visible”
mean geometrically?
Consider the plane hf
containing a facet f of
CK(Pr— 1). By convexity,
CK(Pr— 1) is completely
contained in one of the closed
half-spaces defined by hf.
The face f is visible from a
point if that point lies in the
open half-space on the other
side of h 1.

The horizon of pr plays a
crucial role when we want to
transform CK(Pr— 1) to
CH(Pr): it forms the border
between the part of the
boundary that can be kept—
the invisible facets—and the
part of the boundary that must
be replaced—the visible
facets. The visible facets must
be replaced by facets
connecting pr to its horizon.

Before we go into more
details, we should decide how
we are going to represent the
convex hull of points in
space. As we observed
before, the boundary of a 3-
dimensional convex polytope
can be interpreted as a planar
graph. Therefore we store the
convex hull in the form of a
doubly-connected edge list, a
data structure developed in
Chapter 2 for storing planar
subdivisions. The only
difference is that vertices will
now be 3-dimensional points.
We will keep the convention
that the half-edges are
directed such that the ones
bounding any face form a
counterclockwise cycle when
seen from the outside of the
poly tope.

Figure 11.3

Adding a point to the convex
hull

Back to the addition of pr to
the convex hull. We have a
doubly-connected edge list
representing CK(Pr— 1),
which we have to transform
into a doubly- connected edge
list for CK(Pr). Suppose that
we knew all facets of
CK(Pr— 1) visible from pr.

Then it would be easy to
remove all the information
stored for these facets from
the doubly-connected edge
list, compute the new facets
connecting pr to the horizon,
and store the information for
the new facets in the doubly-
connected edge list. All this
will take linear time in the
total complexity of the facets
that disappear.

There is one subtlety we
should take care of after the
addition of the new facets:
we have to check whether we
have created any coplanar
facets. This happens if pr lies
in the plane of a face of
CH(Pr-1). Such a face f is not
visible from pr by our
definition of visibility above.
Hence, f will remain
unchanged, and we will add
triangles connecting pr to the
edges of f that are part of the
horizon. Those triangles are
coplanar with f, and so they
have to be merged with f into
one facet.

In the discussion so far we
have ignored the problem of
finding the facets of CH(Pr-1)
that are visible from pr. Of
course this could be done by
testing every facet. Since
such a test takes constant
time—we have to check to

which side of a given plane
the point pr lies—we can find
all visible facets in O(r) time.
This would lead to an O(n2)
algorithm. Next we show how
to do better.

The trick is that we are going
to work ahead: besides the
convex hull of the current
point set we shall maintain
some additional information,
which will make it easy to
find the visible facets.

In particular, we maintain for
each facet f of the current
convex hull CH(Pr) a set
Pconflict(f) C {pr+1,
pr+2,...,pn} containing the
points that can see f.
Conversely, we store for
every point pt, with t > r, the
set Fconflict(pt) of facets of
CH(Pr) visible from pt. We
will say that a point p e
Pconflict(f) is in conflict
with the facet f, because p
and f cannot peacefully live
together in the convex hull—
once we add a point p e
Pconflict(f) to the convex
hull, the facet f must go. We
call Pconflict(f) and
Fconflict(pt) conflict lists.

We maintain the conflicts in a

so-called conflict graph,
which we denote by S. The
conflict graph is a bipartite
graph. It has one node set
with a node for every point of
P that has not been inserted
yet, and one node set with a
node for every facet of the
current convex hull. There is
an arc for every -conflict
between a point and a facet.
In other words, there is an arc
between a point pt e P and
facet f of CH(Pr) ifr<tand f
Is visible from pt. Using the
conflict graph S, we can
report the set Fconflict(pt) for
a given point pt (or
Pconflict(f) for a given facet
f) in time linear in its size.

This means that when we
insert pr into CH(Pr-1), all we
have to do is to look up
Fconflict(pr) in S to get the
visible facets, which we can
then replace by the new
convex hull facets connecting
pr to the horizon.

Initializing the conflict graph
S for CH(P4) can be done in
linear time: we simply walk
through the list of points P
and determine which of the
four faces of CH(P4) they can
see.

To update S after adding a
point pr, we first discard the
nodes and incident arcs for all
the facets of CH(Pr-1) that
disappear from the convex
hull. These are the facets
visible from pr, which are
exactly the neighbors of pr in
S, so this is easy. We also
discard the node for pr. We
then add nodes to S for the
new facets we created, which
connect pr to the horizon. The
essential step is to find the
conflict lists of these new
facets. No other conflicts
have to be updated: the
conflict set Pconflict() of a
facet f that is unaffected by
the insertion of pr remains
unchanged.

The facets created by the
insertion of pr are all
triangles, except for those that
have been merged with
existing coplanar facets. The
conflict list of a facet of the
latter type is trivial to find: it
Is the same as the conflict list
of the existing facet, since the
merging does not change the
plane containing the facet. So
let’s look at one of the new
triangles f incident to pr in
CK(Pr). Suppose that a point
pt can see f. Then pt can
certainly see the edge e of f
that is opposite pr. This edge
e is a horizon edge of pr, and
it was already present in

CK(Pr— 1). Since CK(Pr—
1) ¢ CK(Pr), the edge e must
have been visible from pt in
CK(Pr— 1) as well. That can
only be the case if one of the
two facets incident to e in
CK(Pr— 1) is visible from pt.
This implies that the conflict
list of f can be found by
testing the points in the
conflict lists of the two facets
f1 and f2 that were incident to
the horizon edge e in
CK(Pr—1).

We stated earlier that we
store the convex hull as a
doubly-connected edge list,
so changing the convex hull
means changing the
information in the doubly-
connected edge list. To keep
the code short, however, we
have omitted all explicit
references to the doubly-
connected edge list in the
pseudocode below, which
summarizes the convex hull
algorithm.

Algorithm
CONVEXHULL(P)

Input. A set P of n points in
three-space.

Output. The convex hull
CK(P) of P.

1. Find four points p1, p2,
p3, p4 in P that form a
tetrahedron.

2. e N CK({p1, p2, p3,
p4»

3. Compute a random

permutation p5, p6,..., pn of
the remaining points.

4, Initialize the conflict
graph G with all visible pairs
(pt, T), where f is a facet of e
and t > 4.

5. forr-5ton

6. do (* Insert pr into C:
*)

7. if Fconflict(pr) is not
empty (* that is, pr lies
outside e *)

8. then Delete all facets in
Fconflict(pr) from e.

Q. Walk along the
boundary of the visible region
of pr (which consists exactly
of the facets in Fconflict(pr))
and create a list L of horizon
edges in order.

10. foralleelL

11. do Connect e to pr by
creating a triangular facet f.

12. if fis coplanar with its
neighbor facet ' along e

13. then Merge fand f' into
one facet, whose conflict list
Is the same as that of f.

14. else (* Determine
conflicts for f. *)

15. Create a node for f in
G.

16. Let f1 and f2 be the

facets incident to e in the old
convex hull.

17. P(e) ™ Pconflict(fl) u
Pconflict(f2)

18. for all points p e P(e)
19. do If f is visible from
p, add (p, f) to G.

20. Delete the node
corresponding to pr and the
nodes corre-sponding to the
facets in Fconflict(pr) from
G, together with their incident
arcs.

11.3* The Analysis

As usual when we analyse a
randomized incremental
algorithm, we first try to
bound the expected structural
change. For the convex hull
algorithm this means we want
to bound the total number of
facets created by the
algorithm.

Lemma 11.3 The expected
number of facets created by
ConvexHull is at most 6n _
20.

Proof. The algorithm starts
with a tetrahedron, which has
four facets. In every stage r of
the algorithm where pr lies
outside ~ CH(Pr-1), new
triangular facets connecting
pr to its horizon on CH(Pr-1)

are created. What is the
expected number of new
facets?

As in previous occasions
where we analyzed
randomized algorithms, we
use backwards analysis. We
look at CH(Pr) and imagine
remov-ing vertex pr; the
number of facets that
disappear due to the removal
of pr from CH(Pr) is the same
as the number of facets that
were created due to the
insertion of pr into CH(Pr-1).
The disappearing facets are
exactly the ones incident to
pr, and their number equals
the number of edges incident
to pr in CH(Pr). We call this
number the degree of pr in
CH(Pr), and we denote it by
deg(pr, CH(Pr)). We now
want to bound the expected
value of deg(pr, CH(Pr)).

By Theorem 11.1a convex
polytope with r vertices has at
most 3r _ 6 edges. This
means that the sum of the
degrees of the vertices of
CH(Pr), which is a convex
polytope with r or less
vertices, is at most 6r _ 12.
Hence, the average degree is
bounded by 6 _ 12/r. Since
we treat the vertices in
random order, it seems that
the expected degree of pr is
bounded by 6 _ 12/r. We have

to be a little bit careful,
though: the first four points
are already fixed when we
generate the random
permutation, so pr is a
random element of {p5,..pr},
not of Pr. Because pl,..., p4
have total degree at least 12,
the expected value of deg(pr,
CH(Pr)) is bounded as
follows:

The expected number of
facets created by
CONVEXHULL is the
number of facets we start
with (four) plus the expected
total number of facets created
during the additions of p5,... ,
pn to the hull. Hence, the
expected number of created
facets is

4 + n E[deg(Pr, CH(Pr))] < 4
+6(n_4)=06n_20.

r=5

Now that we have bounded
the total amount of structural
change we can bound the
expected running time of the
algorithm.

Lemma 114 Algorithm
ConvexHull computes the
convex hull of a set P of n
points in R3 in O(nlog n)
expected time, where the
expectation is with respect to
the random permutation used
by the algorithm.

Proof. The steps before the
main loop can certainly be

done in O(nlogn) time. Stage
r of the algorithm takes
constant time if Fconflict(pr)
IS empty, which is when pr
lies inside, or on the
boundary of, the current
convex hull.

If that is not the case, most of
stage r takes
O(card(Fconflict(pr))) time,
where card() denotes the
cardinality of a set. The
exceptions to this are the lines
17-19 and line 20. We shall
bound the time spent in these
lines later; first, we bound
card(Fconflict(pr)). Note that
card(Fconflict(pr)) is the
number of facets deleted due
to the addition of the point pr.
Clearly, a facet can only be
deleted if it has been created
before, and it is deleted at
most once. Since the expected
number of facets created by
the algorithm is O(n) by
Lemma 11.3, this implies that
the total number of deletions
is O(n) as well, so

Now for lines 17-19 and line
20. Line 20 takes time linear
in the number of nodes and
arcs that are deleted from G .
Again, a node or arc is
deleted at most once, and we
can charge the cost of this
deletion to the stage where
we created it. It remains to
look at lines 17-19. In stage r,
these lines are executed for

all horizon edges, that is, all
edges in L.

For one edge e e L, they take
O(card(P(e))) time. Hence,
the total time spent in these
lines in stage r is O(feelL
card(P(e))). To bound the
total expected running time,
we therefore have to bound
the expected value of

where the summation is over
all horizon edges that appear
at any stage of the algorithm.
We will prove below that this
is O(nlogn), which implies
that the total running time is
O(nlogn). 0

We use the framework of
configuration spaces from
Chapter 9 to supply the
missing bound. The universe
X is the set of P, and the
configurations A correspond
to convex hull edges.
However, for technical
reasons—in particular, to be
able to deal correctly with
degenerate cases—we attach
a half-edge to both sides of
the edge. To be more precise,
a flap A is defined as an
ordered four-tuple of points
(p, q, s, t) that do not all lie in
a plane. The defining set
D(A) is simply the set {p, q,

s, t}. The killing set K(A) is
more difficult to visualize.
Denote the line through p and
g by I. Given a point X, let
h(l,x) denote the half-plane
bounded by | that contains X.
Given two points X, y, let p
(X, y) be the half-line starting
in X and passing through y. A
point x e X is in K(A) if and
only if it lies in one of the
following regions:

n outside the closed
convex 3-dimensional wedge
defined by h(£, s) and h(£, 1),

n inside h(£, s) but
outside the closed 2-
dimensional wedge defined
by p (p, g) and p (p, s),

n inside h(t, t) but
outside the closed 2-
dimensional wedge defined
by p (a, t) and p (g, p),

[inside the line | but
outside the segment pq,

m inside the half-line p
(p, s) but outside the segment

psS,

m inside the half-line p
(g, t) but outside the segment
qt.

For every subset S ¢ P, we
define the set T(S) of active
configurations—this is what
we want to compute—as
prescribed in Chapter 9: A e

T(S) if and only if D(A) ¢ S
and K(A)nS =0.

Lemma 11.5 A flap A = (p, q,
s, t) is in T(S) if and only if
Pg, ps, and gt are edges of the
convex hull CH(S), there is a
facet f1 incident to pq and ps,
and a different facet f2
incident to pg and qt.
Furthermore, if one of the
facets f1 or f2 is visible from
a point x e P then x e K(A).

We leave the proof—which
involves looking precisely at
the cases when points are
collinear or coplanar, but
which is otherwise not
difficult—to the reader.

As you may have guessed,
the flaps take over the role of
the horizon edges.

Lemma 11.6 The expected
value of £ecard(P(e)), where
the summation is over all
horizon edges that appear at
some stage of the algorithm,
Is O(nlogn).

Proof. Consider an edge e of
the horizon of pr on CH(Pr-
1). Let A=(p, q, s, t) be one
of the two flaps with pg = e.
By Lemma 11.5, A e T(Pr-1),
and the points in P \ Pr that
can see one of the facets
incident to e are all in K(A),

so P(e) ¢ K(A). By Theorem
9.15, it follows that the
expected value of

where the summation is over
all flaps A appearing in at
least one T(Pr), is bounded by

The cardinality of T(Pr) is
twice the number of edges of
CH(Pr). Therefore it is at
most 6r _ 12, so we get the
bound

This finishes the last piece of
the analysis of the convex
hull algorithm. We get the
following result:

Theorem 11.7 The convex
hull of a set of n points in R3
can be computed in O(nlog n)
randomized expected time.

11.4* Convex Hulls and Half-
Space Intersection

In Chapter 8 we have met the
concept of duality. The
strenth of duality lies in that it
allows us to look at a problem
from a new perspective,
which can lead to more
insight in what is really going
on. Recall that we denote the
line that is the dual of a point
p by p*, and the point that is
the dual of a line I by I*. The
duality transform is incidence
and order preserving: p e | if

and only if I* e p*, and p lies
above | if and only if I* lies
above p*.

Let’s have a closer look at
what convex hulls correspond
to in dual space. We will do
this for the planar case. Let P
be a set of points in the plane.
For technical reasons we
focus on its upper convex
hull, denoted UH(P), which
consists of the convex hull
edges that have P below their
supporting line—see the left
side of Figure 11.4. The
upper convex hull is a
polygonal chain that connects
the leftmost point in P to the
rightmost one. (We assume
for simplicity that no two
points have the same x-
coordinate.)

Figure 11.4

Upper hulls correspond to
lower envelopes

When does a point p e P
appear as a vertex of the
upper convex hull? That is
the case if and only if there is
a non-vertical line | through p
such that all other points of P
lie below I. In the dual plane
this statement translates to the
following condition: there is a
point I* on the line p* e P*
such that I* lies below all
other lines of P*. If we look
at the arrangement A(P*), this

means that p* contributes an
edge to the unique bottom
cell of the arrangement. This
cell is the intersection of the
half-planes bounded by a line
in P* and lying below that
line. The boundary of the
bottom cell is an x-monotone
chain. We can define this
chain as the minimum of the
linear functions whose graphs
are the lines in P*,

For this reason, the boundary
of the bottom cell in an
arrangement is often called
the lower envelope of the set
of lines. We denote the lower
envelope of P* by LE(P*)—
see the right hand side of
Figure 11.4.

The points in P that appear on
UH(P) do so in order of
increasing x- coordinate. The
lines of P* appear on the
boundary of the bottom cell
in order of decreasing slope.
Since the slope of the line p*
is equal to the x-coordinate of
p, it follows that the left-to-
right list of points on UH(P)
corresponds exactly to the
right-to-left list of edges of
LE(P*). So the upper convex
hull of a set of points is
essentially the same as the
lower envelope of a set of
lines.

Let’s do one final check. Two

points p and g in P form an
upper convex hull edge if and
only if all other points in P lie
below the line i through p and
g. In the dual plane, this
means that all lines r*, with r
e P \{p, g}, lie above the
Intersection point i* of p* and
g*. This is exactly the
condition under which p*n g*
Is a vertex of LE(P*).

What about the lower convex
hull of P and the upper
envelope of P*? (We leave
the precise definitions to the
reader.) By symmetry, these
concepts are dual to each
other as well.

We now know that the
intersection of lower half-
planes—half-planes bounded
from above by a non-vertical
line—can be computed by
computing an upper convex
hull, and that the intersection
of upper half-planes can be
computed by computing a
lower convex hull. But what
iIf we want to compute the
intersection of an arbitrary set
H of half-planes? Of course,
we can split the set H into a
set H+ of upper half-planes
and a set H- of lower half-
planes, compute u H+ by
computing the lower convex
hull of H+* and uH- by
computing the upper convex
hull of H-*, and then compute

nH by intersecting uH+ and
uH-.

But is this really necessary? If
lower envelopes correspond
to upper convex hulls, and
upper envelopes correspond
to lower convex hulls,
shouldn't then the intersection
of arbitrary half-planes
correspond to full convex
hulls? In a sense, this is true.
The problem is that our
duality transformation cannot
handle vertical lines, and
lines that are close to vertical
but have opposite slope are
mapped to very different
points. This explains why the
dual of the convex hull
consists of two parts that lie
rather far apart.

It is possible to define a
different duality
transformation that allows
vertical lines. However, to
apply this duality to a given
set of half-planes, we need a
point in the intersection of the
half-planes. But that was to
be expected. As long as we
do not want to leave the
Euclidean plane, there cannot
be any general duality that
turns the intersection of a set
of half-planes into a convex
hull, because the intersection
of half-planes can have one
special property: it can be

empty. What could that
possibly correspond to in the
dual? The convex hull of a set
of points in Euclidean space
Is always well defined: there
IS no such thing as
“emptiness.” (This problem is
nicely solved if one works in
oriented projective space, but
this concept is beyond the
scope of this book.) Only
once you know that the
intersection is not empty, and
a point in the interior is
known, can you define a
duality that relates the
intersection with a convex
hull.

We leave it at this for now.
The important thing is that—
although there are technical
complications—convex hulls
and intersections of half-
planes (or half-spaces in
three dimensions) are
essentially dual concepts.

Hence, an algorithm to
compute the intersection of
half-planes in the plane (or
half-spaces in three
dimensions) can be given by
dualizing a convex-hull
algorithm.

11.5* Voronoi Diagrams
Revisited

In Chapter 7 we introduced
the Voronoi diagram of a set
of points in the plane. It may
come as a surprise that there
Is a close relationship
between planar VVoronoi
diagrams and the intersection
of upper half-spaces in 3-
dimensional space. By the
result on duality of the
previous section, this implies
a close relation between
planar Voronoi diagrams and
lower convex hulls in 3-
space.

This has to do with an
amazing property of the unit
paraboloid in 3-space. Let U
= (z = x2 + y2) denote the
unit paraboloid, and let p :=
(px,py, 0) be a point in the
plane z = 0. Consider the
vertical line through p. It
intersects U in the point p' :=

(px,py,pi + pi). Let h(p) be
the non-vertical plane z =

2pxx + 2pyy _ (p2x + p2).
Notice that h(p) contains the
point p'. Now consider any
other point g := (gx, qy, 0) in
the plane z = 0. The vertical
line through g intersects U in
the point ' = (g%, qy, gl +
i), and it intersects h(p) in
q(P) = (9%, aqy, 2pxgx +
2pyqy _ (pi + p2)).

The vertical distance between
g'and g(p) is

gl + 92 _ 2pxgx _ 2pyqy + pi
+pi = (gXx _ px)2 + (qy _ pyf
= dist(p, 9)2.

Hence, the plane h(p)
encodes—together with the
unit paraboloid—the distance
between p and any other point
in the plane z = 0. (Since
dist(p, g)2 > 0 for any point
g, and p' e h(p), this also
implies that h(p) is the
tangent plane to U at p'.)

The fact that the plane h(p)
encodes the distance of other
points to p leads to a
correspondence between
Voronoi diagrams and upper
envelopes, as explained next.
Let P be a planar point set,
which we imagine to lie in
the plane z = 0 of 3-
dimensional space. Consider
the set H := {h(p) | p e P} of
planes, and let UE(H) be the
upper envelope of the planes
in H. We claim that the
projection of UE(H) on the
plane z = 0 is the Voronoi
diagram of P. Figure 11.5
illustrates this one dimension
lower: the Voronoi diagram
of the points pi on the line y =
0 is the projection of the
upper envelope of the lines

h(pi).

Theorem 11.8 Let P be a set

of points in 3-dimensional
space, all lying in the plane z
= 0. Let H be the set of planes
h(p), for p e P, delined as
above. Then the projection of
UE(H) on the plane z = 0 is
the Voronoi diagram of P.

Proof. To prove the theorem,
we will show that the
Voronoi cell of a pointpe P
Is exactly the projection of
the facet of UE(H) that lies
on the plane h(p). Let q be a
point in the plane z = 0 lying
in the Voronoi cell of p.
Hence, we have dist(q, p) <
dist(q, r) for all re P with r =
p. We have to prove that the
vertical line through q
intersects UE(H) at a point
lying on h(p). Recall that for
a point r e P, the plane h(r) is
intersected by the vertical line
through g at the point q(r) :=
(ax, qy, gx + q2 _ dist(q, r)2).
Of all points in P, the point p
has the smallest distance to g,
so q(p) is the highest
Intersection point. Hence, the
vertical line through q
intersects UE(H) at a point
lying on h(p), as claimed.

This theorem implies that we
can compute a \oronoi
diagram in the plane by
computing the upper

envelope of a set of planes in
3-space. By Exercise 11.10
(see also the previous
section), the upper envelope
of a set of planes in 3-space is
in one-to-one correspondence
to the lower convex hull of
the points H* so we can
iImmediately use our
algorithm ConvexHull.

Figure 11.5

The correspondence between
Voronoi diagrams and upper
envelopes

Not surprisingly, the lower
convex hull of H* has a
geometric meaning as well:
its projection on the plane z =
0 is the Delaunay graph of P.

11.6 Notes and Comments

The early convex hull
algorithms worked only for
points in the plane—see the
notes and comments of
Chapter 1 for a discussion of
these algorithms. Computing
convex hulls in 3-dimensional
space turns out to be
considerably more difficult.
One of the first algorithms
was the “gift wrapping”
algorithm due to Chand and
Kapur [84]. It finds facet after
facet by “rotating” a plane

over known edges of the hull
until the first point is found.
The running time is O(nf) for
a convex hull with f facets,
which is O(n2) in the worst
case. The first algorithm to
achieve O(nlog n) running
time was a divide-and-
conquer algorithm by
Preparata and Hong [322,
323]. Early incremental
algorithms run in time O(n2)
[223, 344]. The randomized
version presented here is due
to Clarkson and Shor [133].
The wversion we presented
needs O(nlogn) space; the
original paper gives a simple
Improvement to linear space.
The idea of a conflict graph,
used here for the first time in
this book, also comes from
the paper of Clarkson and
Shor. Our analysis, however,
is due to Mulmuley [290].

In this chapter we have
concentrated on 3-
dimensional space, where
convex hulls have linear
complexity. The so-called
Upper Bound Theorem states
that the worst-case
combinatorial complexity of
the convex hull of n points in
d- dimensional space—
phrased in dual space: the
intersection of n half-
spaces—is 0(nLd/2]). (We
proved this result for the case

d = 3, using Euler’s relation.)
The algorithm described in
this chapter generalizes to
higher dimensions, and is
optimal in the worst case: its
expected running time is
0(n™d/2J). Interestingly, the
best known deterministic
convex hull algorithm for
odd-dimensional spaces is
based on a (quite
complicated)
derandomization of this
algorithm [97]. Since the
convex hull in dimensions
greater than three can have
non-linear complexity,
output-sensitive algorithms
may be useful. The best
known output-sensitive
algorithm for computing
convex hulls in Rd is due to
Chan [82]. Its running time is
O(nlogk + (nk)1-1/(Ld/2J+1)
logO(1) n), where k denotes
the complexity of the convex
hull. A good overview of the
many results on convex-hull
computations is given in the
survey by Seidel [347].
Readers who want to know
more about the mathematical
aspects of polytopes in higher
dimensions can consult
Grunbaum’s book [194],
which is a classical reference
for polytope theory, or
Ziegler’s book [399], which
treats the combinatorial
aspects.

In Section 11.5 we have seen
that the VVoronoi diagram of a
planar point set is the
projection of the upper
envelope of a certain set of
planes in 3-dimensional
space. A similar statement is
true in higher dimensions: the
Voronoi diagram of a set of
points in Rd is the projection
of the upper envelope of a
certain set of hyperplanes in
Rd+1. Not all sets of
(hyper)planes define an upper
envelope whose projection is
the Voronoi diagram of some
point set. Interestingly, any
upper envelope does project
onto a so-called power
diagram, a generalization of
the Voronoi diagram where
the sites are spheres rather
than points [25].

