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A Survey on Wavelet Applications in
Data Mining
ABSTRACT
Recently there has been significant
development in the use of wavelet

methods in various data mining
processes. However, there has been
written  no comprehensive  survey

available on the topic. The goal of this is
paper to fill the void. First, the paper
presents a high-level data-mining
framework that reduces the overall
process into smaller components. Then
applications of wavelets for each
component are reviewd. The paper
concludes by discussing the impact of
wavelets on data mining research and
outlining potential future research
directions and applications.

1. INTRODUCTION
The wavelet transform is a synthesis of
ideas that emerged over many years

from different  fields, such as
mathematics and signal processing.
Generally  speaking, the wavelet

transform is a tool that divides up data,
functions, or operators into different
frequency components and then studies
each component with a resolution
matched to its scale [52]. Therefore, the
wavelet transform is antic-ipated to
provide economical and informative
mathematical repre-sentation of many
objects of interest [1]. Nowadays many
computer software packages contain fast
and efficient algorithms to perform
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wavelet transforms. Due to such easy
accessibility wavelets have quickly
gained popularity among scientists and
engineers, both in theoretical research
and in applications. Above all, wavelets
have been widely applied in such
computer science research areas as im-
age processing, computer vision,
network management, and data mining.
Over the past decade data mining, or
knowledge discovery in databases
(KDD), has become a significant area
both in academia and in industry. Data
mining is a process of automatic
extraction of novel, useful and
understandable patterns from a large
collection of data. Wavelet theory could
naturally play an important role in data
mining since it is well founded and of
very practical use.

Wavelets have many favorable
properties, such as vanishing moments,
hier-archical and multiresolution
decomposition structure, linear time and
space complexity of the transformations,
decorrelated coeffi-cients, and a wide
variety of basis functions. These
properties could provide considerably
more efficient and effective solutions to
many data mining problems. First,
wavelets could provide presentations of
data that make the mining process more
efficient and accurate. Second, wavelets
could be incorporated into the kernel of
many data mining algorithms. Although
standard wavelet applications are mainly
on data which have temporal/spatial
localities (e.g. time series, stream data,
and image data) wavelets have also been
suc-cessfully applied to diverse domains




in data mining. In practice, a wide
variety of wavelet-related methods have
been applied to a wide range of data
mining problems.

Although wavelets have attracted much
attention in the data mining community,
there has been no comprehensive review
of wavelet ap-plications in data mining.
In this paper we attempt to fill the void
by presenting the necessary
mathematical foundations for
understand-ing and using wavelets as
well as a summary of research in
wavelets applications. To appeal to a
broader audience in the data mining
community, this paper also providea
brief overview of the practical research
areas in data mining where wavelet
could be used. The reader should be
cautioned, however, that the wavelet is
so a large research area that truly
comprehensive surverys are almost
impos-sible, and thus, that our overview
may be a little eclectic. An inter-ested
reader is encouraged to consult with
other papers for further reading, in
particular,  surveys  of  wavelet
applicaations in statistics [1; 10; 12;
121; 127; 163], time series analysis
[124; 44; 129; 121; 122], biological data
[9], signal processing [110; 158], image
processing [133; 115; 85] and others
[117; 174]. Also, [93] pro-vides a good
overview on wavelet applications in
database projects. The reader should be
cautioned also that in our presentation
mathe-matical descriptions are modified
so that they adapt to data mining




problems. A reader wishing to learn
more mathematical details of wavelets is
referred to [150; 52; 46; 116; 169; 165;
151].

This paper is organized as follows: To
discuss a wide spectrum of wavelet
applications in data mining in a
systematic manner it seems crucial that
data mining processes are divided into
smaller components. Section 2 presents
a high-level data mining framework,
which reduces data mining process into
four components. Section 3 introduces
some necessary mathematical
background related to wavelets. Then
wavelet applications in each of the four
components will be reviewed in
Sections 4, 5, and 6. Section 7 discusses
some other wavelet applications which
are related to data mining. Finally,
Section 8 discusses future research
directions.

2. A FRAMEWORK FOR DATA
MINING PROCESS

In this section, we give a high-level
framework for data mining process and
try to divide the data mining process
into components. The purpose of the
framework is to make our following
reviews on wavelet applications in a
more systematic way and hence it is
colored to suit our discussion. More
detailed treatment of the data mining
process could be found in [79; 77].

Data mining or knowledge discovery is
the nontrivial extraction of implicit,
previously unknown, and potentially
useful information from large collection
of data. It can be viewed as a




multidisciplinary activity because it
exploits several research disciplines of
artificial intelligence such as machine
learning, pattern recognition, expert
systems, knowledge acquisition, as well
as mathematical disciplines such as
statistics, information theory and
uncertain inference.

In our understanding, knowledge
discovery refers to the overall process of
extracting high-level knowledge from
low- level data in the context of large
databases. In the proposed framework,
we view that knowledge discovery
process usually consists of an iterative
sequence of the following steps: data
management, data preprocessing, data
mining tasks algorithms and post-
processing. These four steps are the four
components of our framework.

First, data management concerns the
specific mechanism and structures for
how the data are accessed, stored and
managed. The data management is
greatly related to the implementation of
data mining systems. Though many
research papers do not elaborate explicit
data management, it should be note that
data management can be extremely
important in practical implementations.
Next, data preprocessing is an important
step to ensure the data quality and to
improve the efficiency and ease of the
mining pro-cess. Real-world data tend
to be incomplete, noisy, inconsistent,
high dimensional and multi-sensory etc.
and hence are not directly suitable for
mining. Data preprocessing usually
includes data cleaning to remove noisy
data and outliers, data integration to




integrate data from multiple information
sources, data reduction to reduce the
dimensionality and complexity of the
data and data transformation to convert
the data into suitable forms for mining
etc.

Third, we refer data mining tasks and
algorithms as an essential step of
knowledge discovery where various
algorithms are applied to perform the
data mining tasks. There are many
different data mining tasks such as
visualization, classification, clustering,
regression and content retrieval etc.
Various algorithms have been used to
carry out these tasks and many
algorithms such as Neural Network and
Principal Component Analysis could be
applied to several different kinds of
tasks.

Finally, we need post-processing [28]
stage to refine and evaluate the
knowledge derived from our mining
procedure. For example, one may need
to simplify the extracted knowledge.
Also, we may want to evaluate the
extracted knowledge, visualize it, or
merely document it for the end user. We
may interpret the knowledge and
incorporate it into an existing system,
and check for potential con-flicts with
previously induced knowledge.

The four-component framework above
provides us with a simple systematic
language for understanding the steps




that make up the data mining process.
Since post-processing mainly concerns
the non-technical work such as
documentation and evaluation, we then
focus our attentions on the first three
components and will review wavelet
applications in these components.

It should be pointed out that
categorizing a specific wavelet tech-
nique/paper into a component of the
framework is not strict or unique. Many
techniques could be categorized as
performing on different components. In
this survey, we try to discuss the
wavelet techniques with respect to the
most relevant component based on our
knowledge. When there is an overlap,
l.e., a wavelet technique might be
related to different components, we
usually briefly exam-ine the
relationships and differences.

3. WAVELET BACKGROUND

In this section, we will present the basic
foundations that are neces-sary to
understand and use wavelets. A wavelet
can own many at-tractable properties,
including the essential properties such
as com-pact  support, vanishing
moments and dilating relation and other
preferred properties such as smoothness
and being a generator of an orthonormal
basis of function spaces L2(Rn) etc.
Briefly speaking, compact support
guarantees the localization of wavelets
(In other words, processing a region of
data with wavelets does not affect the
the data out of this region);




vanishing moment guarantees wavelet
processing can distinguish the essential
information from non-essential
information; and dilating relation leads
fast wavelet algorithms. It is the
requirements of localization,
hierarchical rep-resentation and
manipulation, feature selection, and
efficiency in many tasks in data mining
that make wavelets be a very powerful
tool. The other properties such as
smoothness  and  generators  of
orthonormal basis are preferred rather
than essential. For example, Haar
wavelet is the simplest wavelet which is
discontinuous,  while all  other
Daubechies wavelets are continuous.
Furthermore all Daubechies wavelets
are generators oforthogonal basis for
L2(Rn), while spline wavelets generate
unconditional  basis  rather  than
orthonormal basis [47], and some
wavelets could only generate redundant
frames rather than a basis [138; 53]. The
question that in what Kkinds of
applications we should use orthonormal
basis, or other (say unconditional basis,
or frame) is yet to be solved. In this
section, to give readers a relatively
comprehensive view of wavelets, we
will use Daubechies wavelets as our
concrete examples. That is, in this
survey, a wavelet we use is always
assumed to be a generator of orthogonal
basis.

In signal processing fields, people
usually  thought wavelets to Dbe
convolution filters which has some
specially properties such as quadrature




mirror filters (QMF) and high pass etc.
We agree that it is convenient to apply
wavelets to practical applications if we
thought wavelets to be convolution
filters. However, according to our
experience, thinking of wavelets as
functions which own some special
properties such as compact support,
vanishing moments and multiscaling
etc., and making use of some simple
concepts of func-tion spaces L2 (Rn)
(such as orthonormal basis, subspace
and inner product etc.) may bring
readers a clear understanding why these
ba-sic properties of wavelets can be
successfully applied in data mining and
how these properties of wavelets may be
applied to other problems in data
mining. Thus in most uses of this
survey, we treat wavelets as functions.
In real algorithm designs and
implementa-tions, usually a function is
straightforwardly discretized and treated
as a vector. The interested readers could
refer to [109] for more details on
treating wavelets as filters.

The rest of the section is organized to
help readers answer the fun-damental
questions about wavelets such as: what
Is a wavelet, why we need wavelets,
how to find wavelets, how to compute
wavelet transforms and what are the
properties of wavelets etc. We hope
readers could get a basic understanding
about wavelet after reading this section.

3.1 Basics of Wavelet in L2 (R)




So, first, what is a wavelet? Simply
speaking, a mother wavelet is a function
A(x) such that {*(2Jx — k),i,k e Z} is an
orthonormal basis of L2(R). The basis
functions are usually referred as
wavelets . The term wavelet means a
small wave. The smallness refers to the
condition that we desire that the
function is of finite length or compactly
supported. The wave refers to the
condition that the function is oscillatory.
The term mother implies that the
functions with different regions of
support that are used in the
transformation process are derived by
dilation and translation ofthe mother
wavelet.

At first glance, wavelet transforms are
pretty much the same as Fourier
transforms except they have different
bases. So why bother to have wavelets?
What are the real differences between
them? The simple answer is that wavelet
transform is capable of providing time
and frequency localizations
simultaneously while Fourier transforms
could only provide  frequency
representations. Fourier transforms are
designed for stationary signals because
they are ex-panded as sine and cosine
waves which extend in time forever, if
the representation has a certain
frequency content at one time, it will
have the same content for all time.
Hence Fourier transform is not suitable
for non-stationary signal where the
signal has time varying frequency [130].
Since FT doesn’t work for non-
stationary signal, researchers have




developed a revised version of Fourier
transform, The Short Time Fourier
Transform(STFT). In STFT, the signal
Is divided into small segments where the
signal on each of these seg-ments could
be assumed as stationary. Although
STFT could pro-vide a time-frequency
representation of the signal,
Heisenberg’s  Uncertainty  Principle
makes the choice of the segment length
a big problem for STFT. The principle
states that one cannot know the exact
time-frequency representation of a
signal and one can only know the time
intervals in which certain bands of
frequencies exist.

So for STFT, longer length of the
segments  gives better frequency
resolution and poorer time resolution
while shorter segments lead to better
time resolution but poorer frequency
resolution. Another serious problem
with STFT is that there is no inverse,
i.e., the orig-inal signal can not be
reconstructed from the time-frequency
map or the spectrogram.

Wavelet is designed to give good time
resolution and poor frequency resolution
at high frequencies and good frequency
resolution and poor time resolution at
low frequencies [130]. This is useful for
many practical signals since they
usually have high frequency
components for a short durations
(bursts) and low frequency components
for long durations (trends). The time-
frequency cell structures for STFT and
WT are shown in Figure 1 and Figure 2
respectively.




Figure 2. Time Frequency structure of
WT. The graph shows that frequency
resolution is good for low frequency and
time resolution is good at high
frequencies.

In data mining practice, the key concept
in use of wavelets is the discrete wavelet
transform(DWT). So our following
discussion on wavelet is focused on
discrete wavelet transform.

3.2 Dilation Equation

How to find the wavelets? The key idea
is self-similarity. Start with a function
<j>(x) that is made up of smaller
version of itself. This is the refinement
(or 2-scale,dilation) equation

a'ks are called filter coefficients or
masks. The function 0(x) is called the
scaling function (or father wavelet).
Under certain conditions,

gives a wavelet .

What are the conditions? First, the
scaling function is chosen to preserve its
area under each iteration, so /O 0(x)dx =
1. Integrating the refinement equation
then

Hence ak = 2. So the stability of the
iteration forces a condition on the
coefficient ak. Second, the convergence
of wavelet expansion requires the
condition I-To(—1)kkmak = 0 where m
=0,1, 2,..., Tp — 1 (if a finite sum of
wavelets is to represent the signal as
accurately as possible). Third, requiring
the orthogonality of wavelets forces the
condition k=0 akak+2m = 0




where............ Finally if the scaling
function is required

2. To summarize, the conditions are
stability ak =0

convergence

0 orthogonality of wavelets 2
orthogonality of scaling functions

This class of wavelet function is
constrained, by definition, to be zero
outside of a small interval. This makes
the property of compact support. Most
wavelet functions, when plotted, appear
to be extremely irregular. This is due to
the fact that the refinement equa-tion
assures that a wavelet ~(x) function is
non-differentiable ev-erywhere. The
functions which are normally used for
performing transforms consist of a few
sets of well-chosen coefficients result-
ing in a function which has a discernible
shape.

Let’s now illustrate how to generate
Haar and Daubechies wavelets. They
are named for pioneers in wavelet
theory [75; 51]. First, consider the
above constraints on the ak for N = 2.
The stability condition enforces a0 + al
= 2, the accuracy condition implies a0
— al =0 and the orthogonality gives a2
+ al = 2. The unique solution is a0 = al
=1.ifa0 = al =1, then 0(x) = 0(2x) +
0(2x — 1). The refinement function is
satisfied by a box function

Once the box function is chosen as the
scaling function, we then get the
simplest wavelet: Haar wavelet, as




shown in Figure 3.

Figure 3: Haar Wavelet

Second, if N = 4, The equations for the
masks are:

The solutions are ........... The
corresponding wavelet is Daubechies-
2(db2) wavelet that is supported on
intervals [0, 3], as shown in Figure 4.
This  construction is  known as
Daubechies wavelet construction [51].
In general, dbn represents the family of
Daubechies Wavelets and n is the order.
The family includes Haar wavelet since
Haar wavelet represents the same
wavelet as dbl. Generally it can be
shown that

. The support for dbn is on the
interval [0, 2n — 1].

. The wavelet dbn has n vanishing
moments .
. The regularity increases with the

order. dbn has rn continuous derivatives
(r is about 0.2).

Figure 4: Daubechies-2(db2) Wavelet
Finally let’s look at some examples
where the orthogonal property does not
hold. If a—1 =1, a0 = 1, al = 2, then
0(x) =20(2x + 1) + 0(2x) + 2 0(2x —
1).

The solution to this is the Hat function
So we would get 0(x) = — [0(2x + 1) +
0(2x) — 20(2x — 1). Note that the
wavelets generated by Hat function are
not orthogonal. Similarly, if a—2 = 1,
a—1=2,a0=4,al=2,a2 =1, we get
cubic B-spline and the wavelets it
generated are also not orthogonal.




3.3 Multiresolution  Analysis(MRA)
and fast DWT algorithm

How to compute wavelet transforms?
To answer the question of efficiently
computing wavelet transform, we need
to touch on some material of MRA.
Multiresolution analysis was  first
introduced in [102; 109] and there is a
fast family of algorithms based on it
[109]. The motivation of MRA is to use
a sequence of embedded subspaces to
approximate L2 (R) so that people can
choose a proper subspace for a specific
application task to get a balance
between accuracy and efficiency (Say,
bigger subspaces can contribute better
accuracy  but  waste  computing
resources).  Mathematically, = MRA
studies the property of a sequence of
closed subspaces Vj, j e Z which
approximate L2(R) and satisfy

Ujez Vj = L2(R) (L2(R) space is the
closure of the union of all Vj) and p| j6Z
Vj = 0 (the intersection of all Vj is
empty). So what does multiresolution
mean? The multiresolution is reflected
by the additional requirement f e Vj f
(2x) e Vj+1, je Z (This is equivalent to f
(x) e VO f (2jx) e Vj),i.e., all the spaces
are scaled versions of  the
central(reference) space V0.

So how does this related to wavelets?
Because the scaling function 0 easily
generates a sequence of subspaces
which  can provide a simple




multiresolution analysis. First, the
translations of 0(x), i.e., 0(x — k),k e Z,
span a subspace, say VO (Actually, 0(x
— k), k e Z constitutes an orthonormal
basis of the subspace VO0). Similarly 2—
1/20(2x — k), k e Z span another
subspace, say V1. The dilation equation
3.1 tells us that O can be represented by
a basis of V1 . It implies that O falls into
subspace V1 and so the translations 0(x
— k), k e Z also fall into subspace V1.
Thus VO is embedded into V1.

With  different  dyadic, it s
straightforward to obtain a sequence of
embedded subspaces of L2 (R) from
only one function. It can be shown that
the closure of the union of these
subspaces is exactly L2(R) and their
intersections are empty sets [52]. So
here, we see that j controls the
observation resolution while k controls
the observation location.

Given two consecutive subspaces, say
VO and V1, it is natural for people to
ask what information is contained in the
complement space V1 © VO, which is
usually denoted as WO0. From equation
3.2, it is straightforward to see that O
falls also into V1 (and so its trans-
lations O(x — k),k e Z). Notice that O is
orthogonal to 0. It is easy to claim that
an arbitrary translation of the father
wavelet

0 Is orthogonal to an arbitrary
translation of the mother wavelet




0. Thus, the translations of the
wavelet 0 span the complement
subspace WO. Similarly, for an arbitrary
J, -0kj,k e Z, span an orthonormal basis
of Wj which is the orthogonal
complement space of Vj in Vj+l.
Therefore, L2(R) space is decomposed
into an infinite sequence of wavelet
spaces, i.e., L2(R) = 0 Wj. More formal
proof of wavelets’ spanning
complement spaces can be found in
[52].

A direct application of multiresolution
analysis is the fast discrete wavelet
transform algorithm, called pyramid
algorithm [109]. The core idea is to
progressively smooth the data using an
iterative pro-cedure and keep the detail
along the way, i.e., analyze projections
of f to Wj. We use Haar wavelets to
illustrate the idea through the following
example. In Figure 5, the raw data is in
resolution 3 (also called layer 3).

After the first decomposition, the data
are divided into two parts: one is of
average information (projection in the
scaling space V2 and the other is of
detail information (projection in the
wavelet space W2). We then repeat the
similar decomposition on the data in V2,
and get the projection data in Vi and Wi,
etc. We also give a more formal
treatment in Appendix B.

Figure 5. Fast Discrete Wavelet
Transform

The fact that L2 (R) is decomposed into
an infinite wavelet subspace is
equivalent to the statement that /j,k, j,k
e Z span an orthonormal basis of L2(R).




An arbitrary function f e L2(R) then can
be expressed as follows:

where dj,k = (f, 7},k) is called wavelet
coefficients. Note that j controls the
observation resolution and k controls the
observation location. If data in some
location are relatively smooth (it can be
represented by low-degree
polynomials), then its corresponding
wavelet coefficients will be fairly small
by the wvanishing moment property of
wavelets.

3.4 Examples of Haar wavelet
transform

In this section, we give two detailed
examples of Haar wavelet transform.
3.4.1 One-dimensional transform

Haar transform can be viewed as a
series of averaging and differ-encing
operations on a discrete function. We
compute the averages and differences
between every two adjacent values of
f(x). The procedure to find the Haar
transform of a discrete function f (x) =[7
51 9] is shown in Table 1: Resolution 4
is the full

Table 1: An Example of One-
dimensional Haar Wavelet Transform
resolution of the discrete function f (x).
In resolution 2, (6 5) are obtained by
taking the average of (7 5) and (1 9) at
resolution 4 respectively. (-1 4) are the
differences of (7 5) and (1 9) divided by
2 respectively. This process is repeated
until a resolution 1 is reached. The Haar
transform H(f (x)) =(5.5 -0.5 -1 4) is
obtained by combining the last average
value 5 and the coefficients found on the
right most column, -0.5, -1 and 4.

In other words, the wavelet transform of




original sequence is the single
coefficient representing the overall
average of the original average of the
original numbers, followed by the detail
coefficients in order of increasing
resolutions. Different resolutions can be
obtained by adding difference values
back or subtracting differences from
averages.

For instance, (6 5)=(5.5+0.5,5.5-0.5)
where 5.5 and -0.5 are the first and the
second coefficient respectively. This
process can be done recursively until the
full resolution is reached. Note that no
information has been gained or lost by
this transform: the original sequence had
4 numbers and so does the transform.
Haar wavelets are the most commonly
used wavelets in database/computer
science literature because they are easy
to com-prehend and fast to compute.
The error tree structure is often used by
researchers in the field as a helpful tool
for exploring and un-derstanding the
key properties of the Haar wavelets
decomposition [113; 70]. Basically
speaking, the error tree is a hierarchical
structure built based on the wavelet
decomposition process. The error tree of
our example is shown in Figure 6. The
leaves of the tree represents the original
signal value and the internal nodes cor-
respond to the wavelet coefficients. the
wavelet coefficient associ-ated with an
internal node in the error tree
contributes to the signal values at the
leaves in its subtree. In particular, the
root corresponds the overall average of
the original data array. The depth of the
tree represents the resolution level of the




decomposition.

3.4.2 Multi-dimensional wavelet
transform

Multi-dimensional wavelets are usually
defined via the tensor prod- uct . The
two-dimensional wavelet basis consists
of all possible tensor products of one-
dimensional basis function . In this
section we will illustrate the two-
dimensional Haar wavelet transform
through the following example.

Let’s compute the Haar wavelet
transform of the following two-
dimensional data

The computation is based on 2 x 2
matrices. Consider the upper left matrix

We first compute the overall average: (3
+ 5+ 9 + 8)/4 = 6.25, then the average
of the difference of the summations of
the rows: 1/2[(9 + 8)/2 — (3 + 5)/2] =
2.25, followed by the average of the
difference of the summations of the
columns: 1/2[(5 + 8)/2 — (3 + 9)/2] =
0.25 and finally the average of the
difference of the summations of the
diagonal: 1/2[(3 + 8)/2 — (9 + 5)/2] =
—0.75. So we get the following matrix
For bigger data matrices, we usually put
the overall average element of all
transformed 2 x 2 matrix into the first
block, the average of the difference of
the summations of the columns into the
second block and so on. So the
transformed matrix of the original data
is

3.5 Properties of Wavelets

In this section, we summarize and




highlight the properties of wavelets
which make they are useful tools for
data mining and many other
applications. A wavelet transformation
converts data from an original domain
to a wavelet domain by expanding the
raw data in an orthonormal basis
generated by dilation and translation of
a father and mother wavelet. For
example, in image processing, the
original domain is spatial domain, and
the wavelet domain is frequency
domain.

An inverse wavelet transformation
converts data back from the wavelet
domain to the original domain. Without
considering the truncation error of
computers, the wavelet transformation
and inverse wavelet transformation are
lossless  transformations. So  the
representations in the original domain
and the wavelet domain are completely
equivalent. In the other words, wavelet
transformation preserves the structure of
data. The properties of wavelets are
described as follows:

1. Computation Complexity: First,
the computation of wavelet transform
can be very efficient. Discrete Fourier
trans- form(DFT) requires O(N2)
multiplications and  fast  Fourier
transform also needs O(Nlog N)
multiplications. However fast wavelet
transform based on Mallat’s pyramidal
algo-rithm) only needs O(N)
multiplications. The space com-plexity
Is also linear.

2. Vanishing Moments:  Another
important  property  ofwavelets s
vanishing moments. A function f (x)




which is supported in bounded region w
is called to have n-vanishing moments if
it satisfies the following equation:

That is, the integrals of the product of
the function and low- degree
polynomials are equal to zero. For
example, Haar wavelet(or dbl) has 1-
vanishing moment and db2 has 2-
vanishing moment. The intuition of
vanishing moments of wavelets is the
oscillatory nature which can thought to
be the characterization of difference or
details between a datum with the data in
its neighborhood. Note that the filter [1,
-1] corresponding to Haar wavelet is
exactly a difference oper-ator. With
higher vanishing moments, if data can
be repre-sented by  low-degree
polynomials, their wavelet coefficients
are equal to zero. So if data in some
bounded region can be represented
(approximated) by a low-degree
polynomial, then its corresponding
wavelet coefficient is (is close to) zero.
Thus the vanishing moment property
leads to many important wavelet
techniques such as denoising and
dimensionality reduction. The noisy
data can usually be approximated by
low-degree polynomial if the data are
smooth in most of regions, therefore the
corresponding wavelet coefficients are
usually small which can be eliminated
by setting a threshold.

3. Compact Support: Each wavelet
basis function is supported on a finite
interval. For example, the support of
Haar function is [0,1]; the support of
wavelet db2 is [0, 3]. Compact support




guarantees the localization of wavelets.
In other words, processing a region of
data with wavelet does not affect the the
data out of this region.

4, Decorrelated Coefficients:
Another important aspect of wavelets is
their ability to reduce temporal
correlation so that the correlation of
wavelet coefficients are much smaller
than the correlation of the corresponding
temporal process [67; 91]. Hence, the
wavelet transform could be able used to
re-duce the complex process in the time
domain into a much simpler process in
the wavelet domain.

5. Parseval’s Theorem: Assume that
e e L2 and *>t be the or-thonormal basis
of L2. The Parseval’s theorem states the
following property of wavelet transform

In other words, the energy, which is
defined to be the square of its L2 norm,
Is preserved under the orthonormal
wavelet transform. Hence the distances
between any two objects are not
changed by the transform

In addition, the multiresolution property
of scaling and wavelet functions, as we
discussed in Section 3.3, leads to
hierarchical rep-resentations and
manipulations of the objects and has
widespread applications. There are also
some other favorable properties of
wavelets such as the symmetry of
scaling and  wavelet functions,
smoothness and the availability of many
different wavelet basis functions etc. In
summary, the large number of favorable
wavelet properties make wavelets




powerful tools for many practical prob-
lems.
4, DATA MANAGEMENT

One of the features that distinguish data
mining from other types of data analytic
tasks is the huge amount of data. So data
management becomes very important
for data mining. The purpose of data
management is to find methods for
storing data to facilitate fast and
efficient access. Data management also
plays an important role in the iterative
and interactive nature of the overall data
mining process. The  wavelet
transformation  provides a natural
hierarchy structure and
multidimensional data representation
and hence could be applied to data
management.

Shahabi et al. [144; 143] introduced
novel wavelet based tree struc-tures:
TSA-tree and 2D TSA-tree, to improve
the efficiency of mul-tilevel trends and
surprise queries on time sequence data.
Frequent queries on time series data are
to identify rising and falling trends and
abrupt changes at multiple level of
abstractions.

For example, we may be interested in
the trends/surprises of the stock of
Xerox Corporation within the last week,
last month, last year or last decades. To
support such multi-level queries, a large
amount of raw data usually needs to be
retrieved and processed. TSA (Trend
and Surprise Abstraction) tree are




designed to expedite the query process.
TSA tree is constructed based on the
procedure of discrete wavelet transform.
The root is the original time series data.
Each level of the tree corresponds to a
step in wavelet decomposition. At the
first decomposition level, the original
data is decomposed into a low frequency
part (trend) and a high frequency part
(surprise). The left child of the root
records the trend and the right child
records the surprise.

At the second decomposition level, the
low frequency part obtained in the first
level is further divided into a trend part
and a surprise part. So the left child of
the left child of the root records the new
trend and the right child of the left child
of the root records the new surprise.
This process is repeated until the last
level of the decomposition. The
structure of the TSA tree is described in
Figure 7.

Hence as we traverse down the tree, we
increase the level of abstraction on
trends and surprises and the size of the
node is de-creased by a half. The nodes
of the TSA tree thus record the trends
and surprises at multiple abstraction
levels. At first glance, TSA tree needs to
store all the nodes. However, since TSA
tree encodes the procedure of discrete
wavelet transform and the transform is
lossless, so we need only to store the all
wavelet coefficients (i.e., all the leaf
nodes). The internal nodes and the root
can be easily ob-tained through the leaf
nodes. So the space requirement is
identical to the size of original data set.
In [144], the authors also propose the




techniques of dropping selective leaf
nodes or coefficients with the heuristics
of energy and precision to reduce the
space requirement. 2D TSA tree is just
the two dimensional extensions of the
TSA tree using two dimensional discrete
wavelet transform. In other words, the
1D wavelet transform is applied on the
2D data set in different
dimensions/direction to obtain the
trends and the surprises. The surprises at
a given level correspond to three nodes
which account for the changes in three
different directions: horizontal, vertical
and diagonal. The structure of a 2D
TSA-tree is shown in Fig 8. Venkatesan
et al. [160] proposed a novel image
indexing technique based on wavelets.
With the popularization of digital
Images, managing image databases and
indexing individual images become
more and more difficult since extensive
searching and image com-parisons are
expensive. The authors introduce an
iImage hash func-tion to manage the
Image database. First a wavelet
decomposition of the image is computed
and each subband is randomly tiled into
small rectangles. Each rectangle’s
statistics (e.g., averages or vari-ances)
are calculated and quantized and then
input into the decoding stage and a
suitably chosen error-correcting code to
generate the final hash value.
Experiments have shown that the image
hashing is robust against common image
processing and malicious attacks.
Santini and Gupta [141] defined wavelet
transforms as a data type for image
databases and also presents an algebra to




manipulate the wavelet data type. It also
mentions that wavelets can be stored
using a quadtree structure for every
band and hence the operations can be
implemented efficiently. Subramanya
and Youssef [155] applied wavelets to
index the Audio data. More wavelet
applications for data management can
be found in [140]. We will discuss more
about image indexing and search in
Section 6.5.

5. PREPROCESSING

Real world data sets are usually not
directly suitable for performing data
mining algorithms [134]. They contain
noise, missing values and may be
inconsistent. In addition, real world data
sets tend to be too large, high-
dimensional and so on. Therefore, we
need data cleaning to remove noise, data
reduction to reduce the dimension-ality
and complexity of the data and data
transformation to convert the data into
suitable form for mining etc. Wavelets
provide a way to estimate the
underlying function from the data.

With the vanishing moment property of
wavelets, we know that only some
wavelet coefficients are significant in
most cases. By retaining selective
wavelet coefficients, wavelets transform
could then be applied to denoising and
dimensionality reduction. Moreover,
since wavelet coefficients are generally
decorrelated, we could transform the
original data into wavelet domain and
then carry out data mining tasks. There
are also some other wavelet applications




in data preprocessing. In this section, we
will elaborate various applications of
wavelets in data preprocessing.

5.1 Denoising

Noise is a random error or variance of a
measured variable [78]. There are many
possible reasons for noisy data, such as
measure-ment/instrumental errors
during the data acquisition, human and
computer errors occurring at data entry,
technology limitations and natural
phenomena such as atmospheric
disturbances, etc. Remov-ing noise from
data can be considered as a process of
identifying outliers or constructing
optimal estimates of unknown data from
available noisy data. Various smoothing
techniques, such as binning methods,
clustering and outlier detection, have
been used in data mining literature to
remove noise.

Binning methods smooth a sorted data
value by consulting the values around it.
Many data mining algorithms find
outliers as a by-product of clustering
algorithms [5; 72; 176] by defining
outliers as points which do not lie in
clusters. Some other techniques [87; 14;
135; 94; 25] directly find points which
behave very differently from the normal
ones.

Aggarwal and Yu [6] presented new
techniques for outlier detection by
studying the behavior of projections
from datasets. Data can also be
smoothed by using regression methods
to fit them with a function. In addition,




the post-pruning techniques used in
decision trees are able to avoid the
overfitting problem caused by noisy
data [119]. Most of these methods,
however, are not specially de-signed to
deal with noise and noise reduction and
smoothing are only side-products of
learning algorithms for other tasks. The
in-formation loss caused by these
methods is also a problem.

Wavelet techniques provide an effective
way to denoise and have been
successfully applied in various areas
especially in image re-search [39; 152;
63]. Formally, Suppose observation data
y = (yi,... , yn) is a noisy realization of
the signal

where £i is noise. It is commonly
assumed that £i are independent from
the signal and are independent and
identically distributed (iid) Gaussian
random variables. A usual way to
denoise is to find X such that it
minimizes the mean square error (MSE),
MSE(X) = 27](Xi - Xi)2.

The main idea of wavelet denoising is to
transform the data into a different basis,
the wavelet basis, where the large
coefficients are mainly the useful
information and the smaller ones
represent noise. By suitably modifying
the coefficients in the new basis, noise
can be directly removed from the data.
Donoho and Johnstone [60] developed a
methodology called waveShrink for
estimating X. It has been widely applied
in many applications and implemented




in commercial software, e.g., wavelet
toolbox of Matlab [69].

WaveShrink includes three steps:

1. Transform data y to the wavelet
domain.

2. Shrink the empirical wavelet
coefficients towards zero.

3. Transform the shrunk coefficients
back to the data domain.

There are three commonly used
shrinkage functions: the hard, soft and
the non-negative garrote shrinkage
functions:

where A e [0, TO) is the threshold.
Wavelet denoising generally is different
from traditional filtering approaches and
it is nonlinear, due to a thresholding
step. Deter-mining threshold A is the
key issue in waveShrink denoising.
Min-imax threshold is one of commonly
used thresholds. The minimax threshold
A* is defined as threshold A which
minimizes expression

where RA(0) = EGAX) — 0)2,x ~
N(0,1).

Interested readers can refer to [69] for
other methods and we will also discuss
more about the choice of threshold in
Section 6.3. Li et al. [104] investigated
the use of wavelet preprocessing to
alleviate the effect of noisy data for
biological data classification and
showed that, if the localities of data the
attributes are strong enough, wavelet
denois- ing is able to improve the
performance.

5.2 Data Transformation

A wide class of operations can be
performed directly in the wavelet
domain by operating on coefficients of




the wavelet transforms of original data
sets. Operating in the wavelet domain
enables to per-form these operations
progressively in a coarse-to-fine
fashion, to operate on different
resolutions, manipulate features at
different scales, and to localize the
operation in both spatial and frequency
domains. Performing such operations in
the wavelet domain and then
reconstructing the result is more
efficient than performing the same
operation in the standard direct fashion
and reduces the mem-ory footprint.

In addition, wavelet transformations
have the ability to reduce temporal
correlation so that the correlation of
wavelet co-efficients are much smaller
than the correlation of corresponding
temporal process. Hence simple models
which are insufficient in the original
domain may be quite accurate in the
wavelet domain. These motivates the
wavelet  applications for  data
transformation. In other words, instead
ofworking on the original domain, we
could working on the wavelet domain.
Feng et al. [65] proposed a new
approach  of  applying  Principal
Component Analysis (PCA) on the
wavelet subband. Wavelet transform is
used to decompose an image into
different frequency subbands and a mid-
range frequency subband is used for
PCA rep-resentation. The method
reduces the computational load signif-
icantly  while achieving good
recognition accuracy.

Buccigrossi and  Simoncelli  [29]
developed a probability model for




natural images, based on empirical
observation of their statistics in the
wavelet transform domain. They noted
that pairs of wavelet coefficients,
corresponding to basis functions at
adjacent spatial locations, orientations,
and scales, generally to be non-Gaussian
in both their marginal and joint
statistical properties and specifically,
their marginals are heavy-tailed, and
although they are typically decor-
related, their magnitudes are highly
correlated. Hornby et al. [82] presented
the analysis of potential field data in the
wavelet domain. In fact, many other
wavelet techniques that we will review
for other components could also be
regarded as data transformation.

5.3 Dimensionality Reduction

The goal of dimension reduction9 is to
express the original data set using some
smaller set of data with or without a loss
of information. Wavelet transformation
represents the data as a sum of prototype
functions and it has been shown that
under certain conditions the
transformation only related to selective
coefficients. Hence similar to denoising,
by retaining selective coefficients,
wavelets can achieve dimensionality
reduction. Dimensionality reduction can
be thought as an extension of the data
transformation presented in Section 5.2:
while  data  transformation  just
transforms original data into wavelet
domain  without discarding any
coefficients, di-mensionality reduction
only keeps a collection of selective
wavelet coefficients.




Keep the largest k coefficients and
approximate the rest with 0,

Keep the first k coefficients and
approximate the rest with 0.

Some people also refer this as feature
selection.

Keeping the largest k coefficients
achieve more accurate represen-tation
while keeping the first k coefficients is
useful for indexing [74]. Keeping the
first k coefficients implicitly assumes a
priori the significance of all wavelet
coefficients in the first k coarsest levels
and that all wavelet coefficients at a
higher resolution levels are negligible.
Such a strong prior assumption heavily
depends on a suitable choice of k and
essentially denies the possibility of local
singularities in the underlying function
[1].

It has been shown that [148; 149], if the
basis is orthonormal, in terms of L2
loss, maintaining the largest k wavelet
coefficients pro-vides the optimal k-
term Haar approximation to the original
signal. Suppose the original signal is
given by f (x) = i=01 c(X) where "i(X)
IS an orthonormal basis. In discrete
form, the data can then be expressed by
the coefficients co, * ¢+, cM -1. Let a be
a permutation of 0,... , M — 1 and f'(x)




be a function that uses the first M’
number of coefficients of permutation a,
ie., T'(xX) =iL_1 cCT()"CT(i) (). Itis
then straightforward to show that the
decreasing ordering of magnitude gives
the best permutation as measured in L2
norm. The square of L2 error of the
approximation is

Hence to minimize the error for a given
M', the best choice for a is the
permutation that sorts the coefficients in
decreasing order of magnitude; i.e.,
IcCT(0)| > cCT(1) > ¢ » > cct(m-1).
Using the largest k wavelet coefficients,
given a predefined precision £, the
general step for dimension reduction can
be summarized in the following steps:

. Compute the wavelet coefficients
of the original data set.

. Sort the coefficients in order of
decreasing magnitude to pro-duce the
sequence c0, c1,...,cM_ 1.

. Starting with M' = M, find the
best M' such that

|lci|]| is the norm of ci. In general, the
norm can be chosen as L2 norm where
|lci|| = (c1)2 or L1 norm where ||ci|| = |ci|
or other norms. In practice, wavelets
have been successfully applied in image
compression [45; 37; 148] and it was
suggested that L1 norm is best suited for
the task of image compression [55].

Chan and Fu [131] used the first k
coefficients of Haar wavelet transform
of the original time series for
dimensionality reduction and they also
show that no false dismissal (no




qualified results will be rejected) for
range query and nearest neighbor query
by keeping the first few coefficients.

6. DATA MINING TASKS AND
ALGO-RITHMS

Data mining tasks and algorithms refer
to the essential procedure where
intelligent methods are applied to
extract useful information patterns.
There are many data mining tasks such
as clustering, clas-sification, regression,
content retrieval and visualization etc.
Each task can be thought as a particular
kind of problem to be solved by a data
mining algorithm. Generally there are
many different algorithms could serve
the purpose of the same task.
Meanwhile, some algorithms can be
applied to different tasks.

In this section, we review the wavelet
applications in data mining tasks and
algorithms. We basically organize the
review according to different tasks. The
tasks we discussed are clustering,
classification, regression, distributed
data mining, similarity search, query
processing and visualization. Moreover,
we also discuss the wavelet applications
for two important algorithms: Neural
Network and Princi-pal/Independent
Component Analysis since they could
be applied to various mining tasks.

6.1 Clustering

The problem of clustering data arises in
many disciplines and has a wide range
of  applications.  Intuitively, the
clustering problem can be described as
follows: Let W be a set of n data points




in a multi-dimensional space. Find a
partition of W into classes such that the
points within each class are similar to
each other. The clustering problem has
been studied extensively in machine
learning [41; 66; 147; 177], databases
[5; 72; 7; 73; 68], and statistics [22; 26]
from various perspectives and with
various approaches and focuses.

The  multi-resolution  property of
wavelet  transforms  inspires  the
researchers to consider algorithms that
could identify clusters at different
scales. WaveCluster [145] is a multi-
resolution clustering approach for very
large spatial databases. Spatial data
objects can be represented in an n-
dimensional feature space and the
numerical attributes of a spatial object
can be represented by a feature vector
where each element of the vector
corresponds to one numerical at-tribute
(feature). Partitioning the data space by
a grid reduces the number of data
objects while inducing only small
errors. From a signal processing
perspective, if the collection of objects
in the fea-ture space is viewed as an n-
dimensional signal, the high frequency
parts of the signal correspond to the
regions of the feature space where there
is a rapid change in the distribution of
objects (i.e., the boundaries of clusters)
and the low frequency parts of the n-
dimensional signal which have high
amplitude correspond to the ar-eas of
the feature space where the objects are
concentrated (i.e., the clusters).




Applying wavelet transform on a signal
decomposes it into different frequency
sub-bands. Hence to identify the clusters
Is then converted to find the connected
components in the transformed feature
space.

Moreover, application of wavelet
transformation to  feature  spaces
provides multiresolution data
representation and hence finding the
connected components could be carried
out at different resolution levels. In
other words, the multi-resolution
property of wavelet transforms enable
the WaveCluster algorithm could
effectively identify arbitrary shape
clusters at different scales with different
degrees of accuracy. Experiments have
shown that WaveCluster outperforms
Birch [176] and CLARANS [126] by a
large margin and it is a stable and
efficient clustering method.

6.2 Classification

Classification problems aim to identify
the characteristics that in-dicate the
group to which each instance belongs.
Classification can be used both to
understand the existing data and to
predict how new instances will behave.
Wavelets can be very useful for
classification tasks. First, classification
methods can be applied on the wavelet
domain of the original data as discussed
in Section 5.2 or selective dimensions of
the wavelet domain as we will discussed
in this section. Second, the multi-
resolution property of wavelets can be
incorporated into classification
procedures to facilitate the process.




Castelli et al. [33; 34; 35] described a
wavelet-based classification algorithm
on large two-dimensional data sets
typically large digital images. The
image is viewed as a real-valued
configuration on a rectangular subset of
the integer lattice Z2 and each point on
the lattice (i.e. pixel) is associated with a
vector denoting as pixel-values and a
label  denoting its class. The
classification problem here consists of
observing an image with known pixel-
values but unknown labels and
assigning a label to each point and it
was motivated primarily by the need to
classify quickly and efficiently large
images in digital libraries. The typical
approach [50] is the traditional pixel-by-
pixel analysis which besides being fairly
com-putationally expensive, also does
not take into account the corre-lation
between the labels of adjacent pixels.
The wavelet-based classification method
is based on the progressive classification
[35] framework and the core idea is as
follows: It uses generic (paramet-ric or
non-parametric) classifiers on a low-
resolution representation of the data
obtained using  discrete  wavelet
transform.

The wavelet transformation produce a
multiresolution pyramid representation
of the data. In this representation, at
each level each coefficient corre-sponds
to a k x k pixel block in the original
image. At each step of the classification,
the algorithm decides whether each
coefficient corresponds to a
homogeneous block of pixels and
assigns the same class label to the whole




block or to re-examine the data at a
higher resolution level. And the same
process is repeated iteratively. The
wavelet-based classification method
achieves a significant speedup over
traditional  pixel-wise  classification
methods. For images with pixel values
that are highly correlated, the method
will give more accurate results than the
corresponding non-progressive classifier
because DWT produces a weight
average of the values for a k x k block
and the algorithm tend to assume more
uniformity in the im-age than may
appear when we look at individual
pixels. Castelli et al. [35] presented the
experimental results illustrating the
performance of the method on large
satellite images and Castelli et al. [33]
also presented theoretical analysis on
the method.

Blume and Ballard [23] described a
method for classifying image pixels
based on learning vector quantization
and localized Haar wavelet transform
features. A Haar wavelet transform is
utilized to generate a feature vector per
image pixel and this provides in-
formation about the local brightness and
color as well as about the texture of the
surrounding area. Hand-labeled images
are used to generated the a codebook
using the optimal learning rate learning
vector quantization algorithm.
Experiments show that for small number
of classes, the pixel classification is as
high as 99%. Scheunders et al. [142]
elaborated texture analysis based on
wavelet transformation. The




multiresolution and orthogonal
descriptions could play an important
role in texture classification and image
segmentation. Useful gray-level and
color texture features can be extracted
from the discrete wavelet transform and
useful rotation-invariant features were
found in  continuous transforms.
Sheikholeslami  [146] presented a
content-based retrieval approach that
utilizes the texture features of
geographical images. Various texture
features are extracted using wavelet
transforms. Using wavelet-based multi-
resolution decomposition, two different
sets of features are formulated for
clustering. For each feature set, different
distance measurement techniques are
designed and  experimented  for
clustering images in  database.
Experimental results demonstrate that
the retrieval efficiency and effectiveness
improve when the clustering approach is
used. Mojsilovic et al. [120] also
proposed a wavelet-based approach for
classification of texture samples with
small dimensions. The idea is first to
decompose the given image with a filter
bank derived from an orthonormal
wavelet basis and to form an image
approximation with nigher resolution.

Texture energy measures calculated at
each output of the filter bank as well as
energies if synthesized images are used
as texture features for a classification
procedure based on modified statistical
t- testThe new algorithm has
advantages in classification of small and
noisy samples and it represents a step
toward structural analysis of weak




textures. More usage on texture
classification using wavelets can be
found in [100; 40]. Tzanetakis et al.
[157] used wavelet to extract a feature
set for representing music surface and
rhythm information to build automatic
genre classification algorithms.

6.3 Regression

Regression uses existing values to
forecast what other values will be and it
is one of the fundamental tasks of data
mining. Consider the standard univariate
nonparametric regression setting: yi =
g(ti) + £i,i = 1,... ,n where £i are
independent N(0,a2) random variables.
The goal is to recover the underlying
function g from the noisy data vyi,
without assuming any particular
parametric structure for g. The basic
approach of using wavelets for nonpara-
metric regression is to consider the
unknown function g expanded as a
generalized wavelet series and then to
estimate the wavelet coefficients from
the data. Hence the original
nonparametric ~ problem is  thus
transformed to a parametric one [1].
Note that the denoise problem we
discussed in Section 5.1 can be regarded
as a subtask of the regression problem
since the estimation of the underlying
function involves the noise removal
from the observed data.

6.3.1 Linear Regression
For linear regression, we can express




where ¢0 =< g, 0 >, wjk =< g, \jk >. If
we assume g belongs to a class of
functions with certain regularity, then
the corresponding norm of the sequence
of wj k is finite and wjk’s decay to zero.

So

for some M and a corresponding
truncated wavelet estimator is [1]

Thus the original nonparametric
problem reduces to linear regres-sion
and the sample estimates of the
coefficients are given by:

The performance of the truncated
wavelet estimator clearly depends on an
appropriate choice of M. Various
methods such as Akaike’s Information
Criterion [8] and cross-validation can be
used for choosing M. Antoniadis [11]
suggested  linear  shrunk  wavelet
estimators where the wjk are linearly
shrunk by appropriately chosen level-
dependent factors instead of truncation.
We should point out that: the linear
regression approach here is similar to
the di-mensionality reduction by
keeping the first several wavelet coeffi-
cients discussed in section 5.3. There is
an  implicit  strong  assump-tion
underlying the approach. That is, all
wavelet coefficients in the first M
coarsest levels are significant while all
wavelet coefficients at a higher
resolution levels are negligible. Such a
strong assumption clearly would not
hold for many functions.

Donoho and Johnstone [60] showed that
no linear estimator will be optimal in
minimax  sense  for  estimating




inhomogeneous functions with local
singularities. More discussion on linear
regression can be found in [10].

6.3.2 Nonlinear Regression

Donoho et al. [58; 61; 60; 59] proposed
a nonlinear wavelet estimator of g based
on reconstruction from a more judicious
selection of the empirical wavelet
coefficients. The vanishing moments
property of wavelets makes it
reasonable to assume that essentially
only a few ’large” Wjk contain
information about the underlying
function g, while ’small” Wjk can be
attributed to noise. If we can decide
which are the ’significant’ large wavelet
coefficients, then we can retain them
and set all the others equal to zero, so
obtaining an approximate wavelet
representation of underlying function g.
The key concept here is thresholding.
Thresholding allows the data itself to
decide which wavelet coefficients are
significant.Clearly an appropriate choice
of the threshold value A is fundamental
to the effectiveness of the estimation
procedure. Too large threshold might
“cut off” important parts of the true
function underlying the data while too
small a threshold retains noise in the
selective recon-struction. As described
in Section 5.1, there are three commonly
used thresholding functions. It has been
shown that hard thresh-olding results in
larger variance in the function estimate
while soft thresholding has large bias.
To comprise the trade-off between bias
and variance, Bruce and Gao [27]
suggested a firm thresholding that
combines the hard and soft thresholding.




In the rest of the section, we discuss
more literatures on the choice of
thresholding for nonlinear regression.
Donoho and Johnstone [58] proposed
the universal threshold Aun = aV2 log
n/y™ where a is the noise level and can
be estimated from the data. They also
showed that for both hard and soft
thresholding the resulting nonlinear
wavelet estimator is asymptotically
near-minimax in terms of L2 risk and it
outperforms any linear estimator for
inhomogeneous functions. They [59]
also proposed an adaptive SureShrink
thresholding rule based on minimizing
Stein’s unbiased risk estimate. Papers
[123; 86] investigated using cross-
validation approaches for the choice of
threshold. Some researchers [2; 128]
developed the approaches of
thresholding by hypothesis testing the
coefficients for a significant deviation
from zero. Donoho et al. [61] proposed
level-dependent thresholding  where
different thresholds are used on different
levels. Some researchers [30; 76]
proposed block thresholding where
coefficients are thresholded in blocks
rather  than individually. Both
modifications imply better asymptotic
properties of the resulting wavelet
estimators. Various Bayesian
approaches  for  thresholding and
nonlinear shrinkage has also been
proposed [161; 4; 3; 159].

In the Bayesian approach, a prior
distribution is imposed on wavelet
coefficient and then the function is
estimated by applying a suitable
Bayesian rule to the resulting posterior




distribution of the wavelet coefficients.
Garo- falakis and Gibbons [70]
introduced a probabilistic thresholding
scheme that deterministically retains the
most important  coefficients  while
randomly rounding the other
coefficients either up to a larger value or
down to zero. The randomized rounding
enables unbiased and error-guaranteed
Reconstruction of individual data
values. Interested readers may refer to
[162] for comprehensive reviews of
Bayesian approaches for thresholding.
More discussion on nonlinear regression
can be found in [10].

6.4 Distributed Data Mining

Over the years, data set sizes have
grown rapidly with the advances in
technology, the ever-increasing
computing power and computer storage
capacity, the permeation of Internet into
daily life and the increasingly automated
business, manufacturing and scientific
pro-cesses. Moreover, many of these
data sets are, in nature, geograph-ically
distributed across multiple sites. To
mine such large and dis-tributed data
sets, it is important to investigate
efficient distributed algorithms to reduce
the communication overhead, central
storage requirements, and computation
times. With the high scalability of the
distributed systems and the easy
partition and distribution of a
centralized dataset, distribute clustering
algorithms can also bring the resources
of multiple machines to bear on a given
problem as the data size scale-up.

In a distributed environment, data sites
may be homogeneous, i.e., different




sites containing data for exactly the
same set of features, or heterogeneous,
l.e., different sites storing data for
different set of features, possibly with
some common fea-tures among sites.
The orthogonal property of wavelet
basis could play an important role in
distributed data mining since the
orthogo-nality guarantees correct and
independent local analysis that can be
used as a building-block for a global
model. In addition, the com-pact support
property of wavelets could be used to
design parallel algorithms since the
compact  support guarantees  the
localization of wavelet and processing a
region of data with wavelet does not
affect the the data out of this region.

Kargupta et al.[92; 81] introduced the
idea of performing distributed data
analysis using wavelet-based Collective
Data Mining(CDM) from heterogeneous
sites. The main steps for the approach
can be summarized as follows:

. choose an orthonormal
representation that is appropriate for the
type of data model to be constructed,

. generate approximate
orthonormal basis coefficients at each
local site,

. if necessary, move an
approximately chosen sample of the
datasets from each site to a single site
and generate the approximate basis
coefficients corresponding to non-linear




cross terms,

. combine the local models,
transform the model into the user
described canonical representation and
output the model.

The foundation of CDM is based on the
fact that any function can be represented
in a distributed fashion using an
appropriate basis. If we use wavelet
basis, The orthogonality guarantees
correct and independent local analysis
that can be used as a building-block for
a global model. Hershberger et al. [81]
presented applications of wavelet-based
CDM methodology to multivariate
regression and linear discriminant
analysis.

Experiments have shown that the re-
sults produced by CDM are comparable
to those obtained with cen-tralized
methods and the communication cost
was shown to be di-rectly proportional
to the number of terms in the function
and inde-pendent of the sample size.

6.5 Similarity Search/Indexing

The problem of similarity search in data
mining is: given a pattern of interest, try
to find similar patterns in the data set
based on some similarity measures. This
task is most commonly used for time
series, image and text data sets. For time
series, for example, given the Xerox
stock prices over last 7 days and wish to
find the stocks that have similar
behaviors.

For image, given a sample image and
wish to find similar images in a
collection of image database. For text,




given some keywords, wish to find
relevant documents. More formally, A
dataset is a set denoted DB = {X1, X2,...
, Xi,... , XN}, where Xi = [xo, x1,... ,
xn] and a given pattern is a sequence of
data points Q = [go,ql,... , gn]. Given a
pattern Q, the result set R from the data
set is R = {Xil, Xi2,. .., Xi(,... , Xim },
where {il,12, ¢+, im} C {1, ** e N},
such that D(Xi(.,, Q) < d. If we use
Euclidean distance between X and Y as
the distance function D(X, Y), then,

which is the aggregation of the point to
point distance of two pat-terns.
Wavelets could be applied into
similarity search in several different
ways. First, wavelets could transform
the original data into the wavelet
domain as described in Section 5.2 and
we may also only keep selective wavelet
coefficients to achieve dimensionality
reduction as in Section 5.3.

The similarity search are then conducted
in the transformed domain and could be
more efficient. Although the idea here is
similar to that reviewed in Section 5.2
and Section 5.3: Dboth involves
transforming the original data into
wavelet domain and may also selecting
some wavelet coefficients. However, it
should be noted that here for the data
set: to project the n-dimensional space
into a k-dimensional space using
wavelets, the same k-wavelet
coefficients should be stored for objects
in the data set. Obviously, this is not
optimal for all objects. To find the k




optimal coefficients for the data set, we
need to compute the average energy for
each coefficient. Second, wavelet
transforms could be used to extract
compact feature vectors and define new
similarity measure to facilitate search.
Third, wavelet transforms are able to
support similarity search at different
scales. The similarity measure could
then be defined in an adaptive and
interactive way.

Wavelets have been extensively used in
similarity search in time series [83; 172;
131; 132]. Excellent overview of
wavelet methods in time series analysis
can be found in [44; 121; 122].

Chan and Fu [131] proposed efficient
time series matching strategy by
wavelets. Haar transform wavelet
transform is first applied and the first
few coefficients of the transformed
sequences are indexed in an R-Tree for
similarity search. The method provides
efficient for range and nearest
neighborhood queries. Huhtala et al.
[83] also used wavelets to extract
features for mining similarities in
aligned time series.

Wu et al[l72] presented a
comprehensive comparison between
DFT and DWT in time series matching.
The experimental results show that
although DWT does not reduce relative
matching error and does not increase
query precision in similarity search,
DWT based techniques have several
advantage such as DWT has multi-
resolution property and DWT has
complexity of O(N) while DFT has




complexity of O(Nlog N). Wavelet
transform gives time-frequency
localization of the signal and hence most
of the energy of the signal can be
represented by only a few DWT
coefficients. Struzik and Siebes [153;
154] presented new similarity measures
based on the special presentations
derived from Haar wavelet transform.
Instead of keeping selective wavelet
coefficients, the special representations
keep only the sign of the wavelet
coefficients (sign representation) or
keep the difference of the logarithms
(DOL) of the values of the wavelet
coefficient at highest scale and the
working scale (DOL representation).
The special representations are able to
give  step-wise  comparisons  of
correlations and it was shown that the
similarity measure based on such
representations closely corresponds to
the subjective feeling ofsimilarity
between time series.

Wavelets also have  widespread
applications in content-based sim-ilarity
search in image/audio databases. Jacobs
et al.[85] presented a method of using
image querying metric for fast and
efficient content-based image querying.
The image querying metric is computed
on the wavelet signatures which are
obtained by truncated and quantized
wavelet decomposition. In essential, the
image querying metric compares how
many wavelet significant wavelet
coefficients the query has in common
with the potential targets. Natsev et al.
[125] proposed WALRUS (WAvelet-
based Retrieval of User-specified




Scenes) algorithm for similarity retrieval
in image diastases.

WALRUS  first  uses  dynamic
programming to compute wavelet
signatures for sliding windows of
varying size, then clusters the signatures
in wavelet space and finally the
similarity measure between a pair of
images is calculated to be the fraction of
the area the two images covered by
matching signatures. Ardizzoni et al.
[13] described Windsurf (Wavelet-
Based Indexing of Images Using Region
Fragmentation), a new approach for
image retrieval. Windsurf uses Haar
wavelet transform to extract color and
texture features and applies clustering
techniques to partition the image into
regions. Similarity is then computed as
the Bhattcharyya metric [31] between
matching regions. Brambilla [24]
defined an effective strategy which
exploits multi-resolution  wavelet
transform to effectively describe image
content and is capable of interactive
learning of the similarity measure.
Wang et al. [167; 84] described WBIIS
(Wavelet-Based Image Indexing and
Searching), a new image indexing and
retrieval algorithm with partial sketch
image searching capability for large
iImage  databases. WBIIS applies
Daubechies-8 wavelets for each color
component and low frequency wavelet
coefficients and their variance are stored
as feature vectors. Wang, Wiederhold
and Firschein [166] described WIPETM
(Wavelet Image Pornography
Elimination) for image retrieval.
WIPETM uses Daubechies-3 wavelets,




normalized central moments and color
histograms to provide feature vector for
similarity matching. Subramanya and
Youssef [155] presented a scalable
content-based image indexing and
retrieval system based on vector
coefficients of color images where
highly decorrelated wavelet coefficient
planes are used to acquire a search
efficient feature space. Mandal et al.
[112] proposed fast wavelet histogram
techniques for image indexing. There
are also lots of applications of wavelets
in audio/music information processing
such as [103; 56; 101; 156]. In fact,
IEEE Transactions on Signal Processing
has two special issues on wavelets, in
Dec. 1993 and Jan. 1998 respectively.
Interested readers could refer to these
iIssues for more details on wavelets for
indexing and retrieval in signal
processing.

6.6 Approximate Query Processing
Query processing is a general task in
data mining and similarity search
discussed in Section 6.5 is one of the
specific form of query processing. In
this section, we will describe wavelet
applications in approximate query
processing which is another area within
query processing. Approximate query
processing has recently emerged as a
viable solution for large-scale decision
support. Due to the exploratory nature
of many decision support applications,
there are a number of scenarios where




an exact answer may not be required
and a user may in fact prefer a fast
approximate answer. Wavelet- based
techniques can be applied as a data
reduction mechanism to obtain wavelet
synopses of the data on which the
approximate query could then operate.
The wavelet synopses are compact sets
of wavelet coefficients obtained by the
wavelet decomposition. Note that some
of wavelet methods described here
might overlap with those described in
Section 5.3. The wavelet synopses
reduce large amount of data to compact
sets and hence could provide fast and
reasonably approximate answers to
queries.

Matias, Vitter and Wang [113; 114]
presented a wavelet-based technique to
build histograms on the underlying data
distributions for selectivity estimation
and Vitter et al. [164; 88] also proposed
wavelet-based techniques for the
approximation of range- sum queries
over OLAP data cubes. Generally, the
central idea is to apply multidimensional
wavelet decomposition on the input data
collection (attribute columns or OLAP
cube) to obtain a compact data synopsis
by keeping a selective small collection
of wavelet coefficients. Experiments in
[113] showed that wavelet-based his-
tograms  improve the  accuracy
substantially over random sampling and
results from [164] clearly demonstrated
that wavelets can be very effective in
handling  aggregates over  high-
dimensional OLAP cubes while
avoiding the high construction costs and
storage over-heads.




Chakrabarti et al. [36] extended
previous work on wavelet techniques in
approximate query answering by
demonstrating that wavelets could be
used as a generic and effective tool for
decision support applications. The
generic approach consists of three steps:
the wavelet-coefficient synopses are
first computed and then using novel
query processing algorithms SQL
operators such as select, project and join
can be executed entirely in the wavelet-
coefficient domain. Finally the results is
mapped from the wavelet domain to
relational tuples(Rendering).
Experimental results verify the effec-
tiveness and efficiency. Gilbert et al.
[71] presented techniques for computing
small space representations of massive
data streams by keeping a small number
of wavelet coefficients and using the
repre-sentations for approximate
aggregate queries. Garofalakis and Gib-
bons [70] introduced probabilistic
wavelet synopses that provably enabled
unbiased data reconstruction with
guarantees on the ac-curacy of
individual approximate answers. The
probabilistic tech-nique is based on
probabilistic thresholding scheme to
assign each coefficient a probability of
being retained instead of deterministic
thresholding.

6.7 Visualization

Visualization is one of the description
tasks (exploratory data anal-ysis) of data
mining and it allows the user to gain an
understanding of the data. Visualization
works because it exploits the broader in-
formation bandwidth of graphics as




opposed to text or numbers. However,
for large dataset it is often not possible
to even perform simple visualization
task. The multiscale wavelet transform
facil-itates progressive access to data
with the viewing of the most im-portant
features first.

Miller et al. [118] presented a novel
approach to visualize and ex-plore
unstructured text based on wavelet. The
underlying tech-nology applies wavelet
transforms to a custom digital signal
con-structed from words within a
document. The resultant multireso-
lution wavelet energy is used to analyze
the characteristics of the narrative flow
in the frequency domain. Wong and
Bergeron [170] discussed with the
authenticity  issues of the data
decomposition, particularly for data
visualization. A total of six datasets are
used to clarify the approximation
characteristics of compactly supported
orthogonal wavelets. It also presents an
error tracking mechanism, which uses
the available wavelet resources to
measure the quality of the wavelet
approximations. Roerdink and
Westenberg [137] considered
multiresolution visualization of large
volume data sets based on wavelets.
Starting from a wavelet decomposition
of the data, a low resolution image is
computed; this approximation can be
successively refined. Du and Moorhead
[62] presented a technique which used a
wavelet transform and MPI(Message
Passing Interface) to realize a
distributed visualization system. The
wavelet transform has proved to be a




useful tool in data decomposition and
progressive transmission.

6.8 Neural Network

Neural networks are of particular
interest because they offer a means
ofefficiently modeling large and
complex problems and they can be
applied to many data mining tasks such
as classification, clustering and
regression. Roughly speaking, a neural
network is a set of connected
input/hidden/output units where each
connection has an associated weight and
each unit has an associated activated
function. Usually neural network
methods contain a learning phase and a
working phase. A learning phase is to
adjust the weights and the structures of
the network based on the training
samples while the working phase is to
execute various tasks on new instances.
For more details on neural network,
please refer to [80; 64; 90].

The idea of combining neural networks
with multiscale wavelet de-composition
has been proposed by a number of
authors [42; 98; 43; 54; 97; 49; 95; 96;
171]. These approaches either use
wavelets as the neuron’s activation
functions [98; 38](usually call these as
wavelet neural network), or in a pre-
processing phasing by the ex-traction of
features from time series data [42; 54;
171]. The proper-ties of wavelet
transforms emerging from a multi-scale
decomposi-tion of signals allow the
study of both stationary and non-
stationary signals. On the other hand the
neural network performs a nonlinear




analysis as well linear dependencies due
to different possible structures and
activation functions. Hence combining
wavelets and neural network would give
us more power on data analysis. A
wavelet neural network, using the
wavelets as activation functions and
combining the mathematically rigorous,
multi-resolution character of wavelets
with the adaptive learning of artificial
neural networks, has the capability of
approximating any continuous nonlinear
mapping to any high resolution.
Learning with wavelet neural network is
efficient, and is explicitly based on the
local or global error of approximation.
A simple wavelet neural network
displays a much higher level of
generalization and shorter com-puting
time as compared to three-layer feed
forward neural network [173]. Roverso
[139] proposed an approach for
multivariate temporal classification by
combining wavelet and recurrent neural
network.

Kreinovich et al. [99] showed that
wavelet neural networks are
asymptotically optimal approximators
for functions of one variable in the sense
that it require to store the smallest
possible number of bits that is necessary
to reconstruct a function with a given
precision. Bakshi et al. [18] described
the advantages of wavelet neural
network learning over other artificial
neural learning techniques and discussed
the relationship between wavelet neural
network and other rule-extraction
techniques such as decision trees. It also
shows that wavelets may provide a




unifying  framework  for  various
supervised learning techniques.

WSOM is a feed forward neural
network that estimates optimized
wavelet bases for the discrete wavelet
transform on the basis of the distribution
of the input data [32]. Sheng and Chou
[105] reported the application of using
wavelet transform and self-organizing
map to mine air pollutant data.

6.9 Principal/Independent
Component Analysis

A widely used technique for data
mining is based on diagonalizing the
correlation tensor of the data-set,
keeping a small number of coherent
structures  (eigenvectors) based on
principal components analysis (PCA)
[19]. This approach tends to be global in
character. Principal component analysis
(PCA) has been adopted for many
different tasks. Wavelet analysis and
PCA can be combined to obtain proper
accounting ofglobal contributions to
signal energy  without loss of
information on key local features. In
addition, the multi-resolution property
of wavelets could help to find the princi-
pal component at multiple scales.

Bakshi [16] used multiscale
PCA(MSPCA) for process monitoring.
Multiscale PCA combines the ability of
PAC to decorrelate the variables by
extracting a linear relationship with that
of wavelet analysis to extract
deterministic features and
approximately decor-relate
autocorrelated measurements. MSPCA
computes the PCA of the wavelet




coefficients at each scale, followed by
combining the results at relevant scales.
Due to its multiscale nature, MSPCA is
approximate for modeling of data
containing contributions from events
whose behavior changes over time and
frequency. Process monitoring by
MSPCA involves combining only those
scales where significant events are
detected, and is equivalent to adaptively
filtering the scores and residuals and
adjusting limits for easiest detection of
deterministic changes in the
measurements. Bakshi [17] presented an
overview of multiscale data analysis and
empirical modeling methods based on
wavelet analysis. Feng et al. [65]
proposed an approach of applying
Principal Component Analysis (PCA)
on the wavelet subband as described in
Section 5.2. Wavelet analysis could also
be combined with  Independent
Component Analysis (ICA). The goal of
ICA is to recover independent sources
given only sensor observations that are
unknown linear mixtures of the
unobserved independent source signals.
Briefly, ICA attempts to estimate the
coefficients of an unknown mixture of n
signal sources under the hypotheses that
the sources are statistically independent,
the medium of transmission is
deterministic, and crucially, the mixture
coefficients are constant with respect to
time. One then solves for the sources
from the observations by inverting the
mixture  matrix. In  contrast to
correlation-based transformations such
as Principal Component Analysis
(PCA), ICA not only decorrelates the




signals (2nd-order statistics) but also
reduces higher-order statistical
dependencies, attempting to make the
signals as independent as possible.

In other words, ICA is a way of finding
a linear non-orthogonal co-ordinate
system in any multivariate data. The
directions of the axes of this co-ordinate
system are determined by both the
second and higher order statistics of the
original data. The goal is to perform a
linear transform which makes the
resulting variables as statistically
independent from each other as possible.
More details about the ICA algorithms
can be found in [21; 48; 20; 89]. A
fundamental weakness of existing ICA
algorithms, namely that the mixture
matrix is assumed to be essentially
constant. This is unsatisfactory when
moving sources are involved. Wavelet
transforms can be utilized to this
problem by using time-frequency
characteristics of the mixture matrix in
the source identification. Moreover, ICA
algorithms could also make use of the
multiscale representation of wavelet
transforms.

7. SOME OTHER
APPLICATIONS

There are some other wavelet
applications that are related to data
mining.

Web Log Mining: Wavelets offer
powerful techniques for mathe-matically
representing web requests at multiple
time scales and a compact and concise
representation of the requests using
wavelet coefficients. Zhai et al. [175]
proposed to use wavelet-based tech-




niques to analyze the workload collected
from busy web servers. It aims at
finding the temporal characteristics of
the web server weblog which contains
workload information and predicting the
trend it evolves.

Traffic  Monitoring: The  wavelet
transform significantly reduces the
temporal dependence and simple models
which are insufficient in the time
domain may be quite accurate in the
wavelet domain. Hence wavelets
provide an efficient way to modeling
network traffic. Riedi et al. [136]
developed a new multiscale modeling
framework for characterizing positive-
valued data with long- range-dependent
correlations. Using the Haar wavelet
transform and a special multiplicative
structure on the wavelet and scaling
coefficients to ensure positive results.
Ma and Ji [106; 107; 108] presented the
work on modeling on modeling
temporal correlation (the second-order
statistics) of heterogeneous traffic, and
modeling non-Gaussian  (high-order
statistics) and periodic traffic in wavelet
domain.

Change Detection: The good time-
frequency localization of wavelets
provides a natural motivation for their
use in change point detection problems.
The main goal of change detection is
estimation of the number, locations and
sizes of function’s abrupt changes such
as sharp spikes or jumps. Change-point
models are used in a wide set of
practical problems in quality control,
medicine, economics and physical
sciences [1]. The general idea ofusing




wavelet for detecting abrupt changes is
based on the connection between the
function’s local regularity properties at a
certain point and the rate of decay of the
wavelet coefficients located near this
point across increasing resolution level
[111]. Local regularities are identified
by unusual behavior in the wavelet
coefficients at high-resolution levels at
the corresponding location [168]. Bailey
et al. [15] used wavelet to detect signal
in underwater sound. Donoho et al. [57]
discussed the application of wavelets for
density estimation.

8. CONCLUSION

This paper provides an application-
oriented overview of the math-ematical
foundations of wavelet theory and gives
a comprehensive survey of wavelet
applications in data mining The object
of this paper is to increase familiarity
with basic wavelet applications in data
mining and to provide reference sources
and examples where the wavelets may
be wusefully applied to researchers
working in data analysis. Wavelet
techniques have a lot of advantages and
there  al-ready  exists  numerous
successful applications in data mining.
It goes without saying that wavelet
approaches will be of growing
Importance in data mining.

It should also be mentioned that most of
current works on wavelet applications in
data mining are based orthonormal
wavelet basis. However, we argue that
orthonormal basis may not be the best
rep-resentation for noisy data even
though the vanishing moments can help




them achieve denoising and
dimensionality  reduction  purpose.
Intuitively, orthogonality is the most
economical representation. In other
words, in each direction, it contains

equally important infor-mation.
Therefore, it is wusually likely that
thresholding  wavelet  coefficients

remove useful information when they
try to remove the noise or redundant
information (noise can also be regarded
as one kind of redundant information).
To represent redundant infor-mation, it
might be good to use redundant wavelet
representation - wavelet frames. Except
orthogonality, wavelet frames preserve
all other properties that an orthonormal
wavelet basis owns, such as vanishing
moment, compact support,
multiresolution. The re-dundancy of a
wavelet frame means that the frame
functions are not independent anymore.
For example, vectors [0,1] and [1, O] is
an orthonormal basis of a plane R2,
while vectors [1/2,1/2], [—1/2,1/2], and
[0, —1] are not independent, and consist
a frame for R2 . So when data contain
noise, frames may provide some specific
directions to record the noise. Our work
will be the establishment of criteria to
recognize the direction of noise or
redundant information.

Wavelets could also potentially enable
many other new researches and
applications such as conventional
database compression, mul-tiresolution
data analysis and fast approximate data
mining etc. Fi-nally we eagerly await
many  future  developments and
applications of wavelet approaches in

Wavelet ciing c¢6 tiém ning cho phép
nhiéu nghién ciru va cac tmg dung moi
nhu nén co so dir liéu truyén théng,
phan tich dir li€u da phan gidi va khai
thac nhanh dir liéu gan




data mining.






