Theo yéu cu ciia khich hing, trong mt nim
qua, ching t61i 48 dijch qua 16 mén hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chua tinh cic
tai liéu tir nim 2010 tr& vé& truéc) Xem & ddy

DICH VU "Cpisau mot lan lién lac, viée

DICH S it
TIENG

ANH |
CHUYRN Gia ca: co thé giam dén 10

NGANH nhin/l tran
NHANH

NHAT VA Chat luc_mg:Tgo dung niém tin cho
khach hang bang céng nghé 1.Ban

XAC théy duoc to.:ém b6 ban dich; 2.Ba,n

NHAT danh gia chat lwong. 3.Ban quyét
dinh thanh toan.

Tai liéu nay dwoc dich sang tiéng viét béi:

VA A2 L E T A (W 11|

Tim ban géc tai thw muc nay (copy link va dan hodc nhan Ctrl+Click):

https://drive.google.com/folderview?id=0B4rAPqlxlMRDSFE2RX0Q2N3FtdDA&usp=sharing

Lién hé dé mua:

thanhlam1910 2006@yahoo.com hoic frbwrthes@gmail.com hoic s6 0168 8557 403 (gap Lam)

Gi4 tién: 1 nghin /trang don (trang khéng chia cdt); 500 VND/trang song ngir

Dich tai li¢u ciaa ban: http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

https://drive.google.com/folderview?id=0B4rAPqlxIMRDSFE2RXQ2N3FtdDA&usp=sharing
mailto:thanhlam1910_2006@yahoo.com
mailto:frbwrthes@gmail.com
http://www.mientayvn.com/dich_tieng_anh_chuyen_nghanh.html

A BASIS FOR DEDUCTIVE DATABASE
SYSTEMS

J.w.LLOYD AND R. w. TOPOR

This paper provides a theoretical basis for
deductive database systems. A deductive
database consists of closed typed first order
logic formulas of the form A *- W, where A
iIs an atom and W is a typed first order
formula. A typed first order formula can be
used as a query, and a closed typed first order
formula can be used as an integrity constraint.
Functions are allowed to appear in formulas.
Such a deductive database system can be
implemented using a PROLOG system. The
main results are the soundness of the query
evaluation process, the soundness of the
implementation of integrity constraints, and a
simplification theorem for implementing
integrity constraints. A short list of open
problems is also presented.

1. INTRODUCTION

In recent years, there has been a growing
interest in deductive database systems [4-
7,15]. Such systems have first order logic as
their theoretical foundation. This approach
has several desirable properties. Logic itself
has a well-understood semantics.
Furthermore, its use as a foundation for
database systems means that we can employ
logic as a uniform language for data,
programs, queries, views, and integrity
constraints.

One of the most promising approaches to
implementing deductive database systems is
to use a PROLOG system as the query
evaluator [2,8,10,12,17,18]. This approach
requires some restrictions on the Kkinds of
formulas which can be used in the database.
However, such deductive databases are

MOT SO VAN BE CO BAN VE CO SO DU
LIEU SUY DIEN

Bai bao nay trinh bay co s¢ 1y thuyét cta cac
hé thdng co so dir liéu suy dién. Mot co so dir
liéu suy dién bao gdm céc cong thirc logic bac
nhét -dong - dinh kiéu c6 dang, trong do
A a2 mOt atom va W 1a m0t cong thuc bac
nhat dinh kiéu. Cong thic bac nhat dinh kiéu
¢ thé dugc dung nhu mot truy van, va cong
thirc bac nhat - dong - dinh kiéu c6 thé duoc
dung nhu mot rang budc toan ven. Trong
cong thirc ¢6 thé cé cac ham. Ching ta c6 thé
thuc thi mot hé thong co s dit liéu suy dién
nhu thé bang mot hé théng PROLOG. Cac két
qua chinh 1a tinh ding dan cta qua trinh dang
gia truy van, tinh dung dan cta sy thyc thi cac
rang budc toan ven, va mot dinh ly don gian
héa dé thuc thi cac rang budc toan ven.
Chung t61 cling dua ra mét danh sach vai bai
tap mo.

1.GIOI THIEU

Trong nhitng nim gin day, cac nha nghién
clru ngdy cang quan tdm dén cac hé co so dir
liéu suy dién [4-7,15]. Nhitng hé nhu thé c6
co s& 1y thuyét 13 logic bac nhat. Cach tiép
can ndy c6 mot sd tinh chat dang quan tam.
Ban than logic c6 mot nglr nghia rd rang. Hon
nira, viéc st dung n6 nhu mot co sé cho céc
hé co so dit liéu dong nghia v6i viée chung ta
c6 thé str dung logic dudi dang mot ngdn ngit
théng nhat cho dir liéu, chuong trinh, truy
van, hién thi va cac rang budc toan ven.

Mot trong nhirng cach tiép can c6 nhiéu tiém
ning nhat trong viéc thuc thi cac hé co so dir
liéu suy dién 1a str dung cac hé PROLOG nhu
mot chwong trinh danh gid truy van
[2,8,10,12,17,18]. Phuong phap nay ap dat
mot sd rang budc trén cac loai cong thirc
dugc dung trong co so dir li¢u. Tuy nhién, cac

substantially more general than relational
databases and can still be implemented
efficiently.

This paper contains some basic theoretical
results for such an approach to deductive
database systems. In particular, it builds on
earlier work in [10], which contains special
cases of some of the results presented here. In
[10], to simplify matters, we assumed that
there were no functions in databases, integrity
constraints, or queries. In this paper that
restriction is removed. It turns out that the
proof of a key lemma (Lemma 1 below) is
considerably more difficult when functions
are allowed.

The major results of this paper are the
soundness of query evaluation and the
soundness of the implementation of integrity
constraints. These results give a firm
theoretical foundation in a general setting for
the approach of implementing deductive
database systems using PROLOG. Also
presented is a simplification theorem for
implementing integrity constraints which
extends a similar result for relational
databases given in [13].

In Section 2, we introduce the main concepts
used in these results. In Section 3, the
soundness of the query evaluation process is
proved. In Section 4, we prove that the
implementation of integrity constraints is
sound and we prove the simplification
theorem. The last section contains some open
problems.

We assume familiarity with [10] and also the
basic theoretical results of logic
programming, which can be found in [9], The
notation and terminology of this paper is
consistent with [9] and [10],

co sO dir liéu suy dién nhu thé tong quat hon
dang ké cac co s¢ dir li€u quan h¢ va van co
thé dugc thuc thi c6 hi¢u qua.

Bai bao nay trinh bay mot s6 két qua 1y thuyét
vé phuong phap tlep can cac hé cd s¢ dir ligu
suy dién nhu thé. Pac biét, n6 xay dung trén
cong trinh trudc day trong [10], cong trinh
chtra cac truong hop dic biét cua nhiing két
qua dugc trinh bay ¢ day. Trong [10], dé don
gian hoéa van dé, ching toi gia sir rang khong
c6 cac ham trong co s& dir li€u, cac rang bude
toan ven hodc cac truy van. Trong bai bao
nay, nhiing han ché d6 duoc loai bo. Chung ta
s& thay rang viéc chirmg minh bd dé chinh (B6
dé 1 bén dudi) khé hon dang ké khi c6 cac
ham.

Cac két qua chinh cta bai bdo nay 1a tinh
dung din cta danh gia truy van va tinh ding
dan cta viéc thuc thi cac rang budc toan ven.
Nhitng két qua nay cho chung ta mot nén tang
ly thuyet viing chic trong trudong hop tong
quat dé tiép can véi viée thuc thi cac hé co so
dir lidu suy dién bing PROLOG. Ching toi
cling trinh bay mét dinh 1y don gian dé thyc
thi cac rang budc toan ven, dinh ly nay mo
rong két qua tuong tu cho cac co so dir licu
quan hé dugc trinh bay trong [13].

Trong phan 2, chung t6i dwa vao nhitng khai
niém chinh duoc st dung trong nhitng két qua
nay. Trong phan 3, tinh dung din cua qua
trinh danh gia truy vin duoc ching minh.
Trong phan 4, chung to6i ching minh rang
viéc thuc thi cac rang budc toan ven la ding
dan va chung t6i chirng minh dinh 1y don gian
hoa. Trong phan cudi, chung toi dua ra mot s6
bai tap mo.

Gia str chung ta da biét [10] va cac két qua 1y
thuyét co ban cua lap trinh logic, c¢6 thé tham
khao trong [9], ky hi¢u va thuat ngit cua bai
bao nay thong nhét vai [9] va [10].

2. BASIC CONCEPTS

In this section, we introduce the concepts of a
deductive database, query, and integrity
constraint. We also give the definition of the
completion of a database and a correct answer
substitution.

We emphasize that, in contrast to [10], here
we allow functions to appear in databases,
queries, and integrity constraints. The
introduction of functions does cause certain
problems (see [14] for a discussion), and
hence they are commonly excluded in the
database context. The major reason for
excluding functions is that they can cause the
set of answers to a query to be infinite and
hence affect the ability of the system to return
all answers. However, as we show, having
functions does not affect soundness in any
way and, after all, soundness is the prime
theoretical requirement of any database
system. In any case, at this stage, it is
important to push the theoretical
developments as far as possible.

Underlying all the theoretical developments is
a typed first order language. We assume that
the language contains only finitely many
constants, functions, and predicates.

Each predicate, function, constant, and
variable is typed. Predicates have type
denoted rxX e XV and functions have type
denoted Ti X e ¢ e x T,, -»rI.

If / has type rx X * « Xt,,-*t, we say / has
range typer.

Terms in the language have a type induced in
the obvious way. We assume that, for each
type r, there is a ground term of type r.

We use the notation 'ix/rW and 3x/rW to
indicate that the bound variable x of the
quantifier is of type r. V(f) denotes the typed
universal closure of the formula F.

We also use V to denote the ordinary type-
free universal closure. It will always be clear
from the context which is meant. The
concepts of interpretation, model, logical
consequence, and so on, are defined in the
natural way for typed first order logic (also
called many-sorted first order logic).
Background material on types is contained in
[3].

The reason for using a typed language is
evident. Types provide a natural way of
expressing the domain concept of relational
databases. The requirement that formulas be
correctly typed ensures that important kinds
of integrity constraints are maintained.

Next we turn to the definitions of the main
concepts. For examples of these concepts, see
[10].

Definition. A database clause is a typed first
order formula of the form A*- W

where A is an atom and W is a typed first
order formula. A is called the head and W the
body of the clause. The formula W may be
absent. Any variables in A and any free
variables in W are assumed to be universally
quantified at the front of the clause.

Definition. A database is a finite set of
database clauses.

Definition. A query is a typed first order
formula of the form «- W

where W is a typed first order formula and
any free variables of W are assumed to be
universally quantified at the front of the

query.

Definition. Let «- W be a query, where W has
free variables xv..., X,. An answer
substitution is a substitution for some or all of
the variables xlt..., x,,.

It is understood that substitutions are
correctly typed in that each variable is bound
to a term of the same type as the variable.

As in [10], our soundness results require the
introduction of the completion of a database.

The definition of the completion given here is
a generalization of the definition given in
[10]. This generalization is needed because
we are now allowing functions to appear in
formulas. The definition of the completion
requires the introduction of a typed equality
predicate = T, for each type t.

These predicates are assumed not to appear in
the original language. In particular, no
database, query or integrity constraint
contains any = T.

Definition. Let D be a database and p a
predicate occurring in D. Suppose the
predicate p has definition

where each Ai has the form p(tv..., t,,). Then
the completed definition of p is the formula

where xly...,x,, are variables not appearing in
any Ai«- Wn each Ei has the form

and yv..., yd are the variables of Ai *- Wi
which are universally quantified at the front
of the clause.

Definition. Let D be a database and p a
predicate occurring in D. Suppose there is no
clause in D with predicate p in its head. Then
the completed definition of p is the formula

The equality theory for a database consists of
all axioms of the following form:

(1) c¢ =*Td, where ¢ and d are distinct
constants of type r.

(2) V(fixl,...,x,,)* Tg(yv...,ym)), where /
and g are distinct functions of range type r.

(3) V({(X},..., x,,) £ T ¢), where ¢ is a
constant of type t and / is a function of range
type t.

(4) VX" Tx), where i[x] is a term of type
t containing x and different from x.

(5) JoV
V(x,,*Tmya) M(x1,...,xn)*rf(yl,...,yn)),
where/is a function of type TX X » » m

(6) VX/Ir(x=Tx).
(7) A, = rmyl,) M(x1,...,xn) -
Tf(yl,....y,,)),

where/ is a function of type tx X e ¢« X t,, -*
t.
8 V((X'="MAAJUC,=T>

where ” (including every =T) is a predicate of
type Tj X » m « XT,,.

(9) Vjc/t((Jc=Tfli) VeeeV (jc=Tak) V
(Bjcj/tj » » m 3x,,/t,,(x = ...,X,,)))

V eeeV(@tAie e e =rfriJ',* » m. Jm))))>
where alt...,ak are all the constants of type t
and fx,...,fr are all the functions of range type
t.

Axioms 1 to 8 are the typed versions of the
usual equality axioms for a program [9], The
axioms 9 are the domain closure axioms. This

equality theory generalizes the equality theory
given in [10] for the function-free case.

Definition. Let D be a database. The
completion of D, denoted comp(D), is the
collection of completed definitions for each
predicate in D together with the above
equality theory.

Definition. Let D be a database and Q a query
<-W.

A correct answer substitution for comp(D) U
{£7?} is an answer substitution 0 such that V/(
WO) is a logical consequence of comp(D).

The concept of a correct answer substitution
gives a declarative understanding of the
desired output from a query to a database. In
the next section, we prove the soundness of
an implementation of this concept.

Next we turn to integrity constraints.

Definition. An integrity constraint is a closed
typed first order formula.

Intuitively, an integrity constraint should be
an invariant of the database. This leads us to
make the following definition.

Definition [15]. Let D be a database such that
comp(Z)) is consistent, and let W be an
integrity constraint. We say D satisfies W if
W is a logical consequence of comp(D);
otherwise, we say D violates W.

Finally we define a class of databases that has
several important properties.

Definition. A database is called hierarchical if
its predicates can be partitioned into levels so

that the definitions of level 0 predicates
consist solely of database clauses A «- and
the bodies of the clauses in the definitions of
level j predicates (j > 0) contain only level i
predicates, where i < j.

Such a database is more general than a
relational database, but does not allow
recursively defined predicates. Related
definitions are given in [1] and [16].

3. QUERIES

In this section, we shall prove that our query
evaluation process is sound. To prove this
result, we only have to prove a generalization
of Lemma 4 of [10] for which functions are
allowed. The remainder of the argument
given in [10] is valid in this more general
context. The generalization of Lemma 4 of
[10] which we require is given by Lemma 1
below.

The precise details of the query evaluation
process are given in [10]. Fortunately, most of
the details are not needed to understand
Lemma 1. Thus we only present here an
overview of query evaluation. The first step
of the query evaluation process transforms
typed first order formulas into corresponding
type-free first order formulas. For this, we use
a standard transformation [3],

Definition. Let W be a typed first order
formula. For each type t, we associate a unary
type predicate also denoted by t.

Then the type-free form W* of W is the first
order formula obtained from W by applying
the following transformations to subformulas
of W of the form Vx/tF and 3X/TV:

(a)
(b)

We will also require the usual type theory [3],

Replace Vx/rV by Vx(V*- T(X)).

Replace 3X/TV by 3x(V A r(x)).

Definition, The type theory O consists of all
axioms of the following form:

(1) r(a), where a is a constant of type t.
(2) Vxj e e o Vxn(r(f{x-1,X,,))«- A * e A
r”(X”)))

where / 1s a function of type X e ¢« X t,, -* 1.

Now we can give an overview of query
evaluation. To answer a query Q to a database
D, we first transform Q and D to their type-
free forms Q* and D¥*,

where D* = {c* : Ce D).

We then transform Q* and Z)*U$ into an
ordinary PROLOG goal G and program P
(which generally may include negations) by
successively applying some of the 10
transformation rules given in [10], which
eliminate universal quantifiers, implications,
and so on, in the bodies of clauses. A
computed answer to the query Q for the
database D is then defined to be a computed
answer to the goal G for the program P. Note
that, due to the presence of the type
predicates, every computed answer is a
ground substitution for all free variables in
the body of the query. As we explained in
[10], to ensure that the negations are handled
properly, it is essential that the PROLOG
system use a safe computation rule (that is,
one which only selects negative literals that
are ground). If R is a safe computation rule,
then an R-computed answer substitution for

DU (0) is an /A-computed answer substitution
for P U {G}.

Since we are allowing functions, a query can
have infinitely many answers. However,
under a reasonable restriction on the type
theory <!>, we can ensure that each query can
have at most finitely many answers. As with
databases, we say that <E> is hierarchical if
there are some types whose type axioms are
only of the form (1) above (that is, these types
do not have any function of that range type),
there are some further types whose axioms of
the form (2) above can only refer to the first
set of types in their bodies, and so on. In
particular, this restriction bans recursion in 0.

For such a type theory, it is clear that there
are only finitely many ground terms of each
type. Consequently, each query can have at
most finitely many answers. We emphasize
that it is not so much the presence of
functions which causes queries to have
infinitely many answers, but rather the
presence of a “recursive” type theory.

With this background, we now proceed with
the proof of Lemma 1. The lemma is a
technical one which is only concerned with
the first step of query evaluation, where we
transform typed formulas into type-free ones.
In this lemma, D* U $ is essentially a type-
free database (called an extended program in
[10]), and its completion, comp(D* u <i>), is
essentially a type-free version of the
completion of a database given above,
without the domain closure axioms. We refer

the reader to [10] for the precise definitions.

Lemma 1. Let D be a database and W a
closed typed first order formula. Let D* and
W=* be the type-free forms of D and W. If W*
is a logical consequence of comp(D* U $),
then W is a logical consequence of comp(Z)).

PROOF. The proof is rather long and requires
some preparation. Given a model M for
comp(D), we have to construct a model M*
for comp(D* US$). The complexity of the
construction of M* which we use is needed to
ensure that the equality axioms are satisfied.

Let M be a model for comp(D). Using (the
typed version of) [11, p. 83], we can assume
without loss of generality that M is normal,
that is, each = T is assigned the identity
relation on the domain CT of type r. We can
also suppose the CT’s are disjoint. Put C = U
TCT.

The wunderlying language L* for the
interpretation M* includes all the constants,
functions, and (nonequality) predicates of the
underlying language L for M. L* differs from
L in that all type information is suppressed,
the various typed equality predicates = T are
replaced by a single equality predicate =, and
there is a unary predicate r for each type r.

Let F' be the set of mappings on the CT
assigned by M to the functions in L. Let T be
the set of all (free) terms that can be formed
using elements of C as primitive terms and
elements of F' as functions. (Note that the
type restrictions are ignored in forming these
terms).

The domain of M* will be the set of
equivalence classes of a particular
equivalence relation Aon 7.

To define A, we introduce a reduction
operation on T7.

We write f'(dx,dn) —> d if / has type tx x m *
m XT,, -» t, /' is the mapping assigned to / by
M, dte CT., ;eCT, and f\dx,..., d,,) = d.

For s, t"T, we write s => t if t is the result of
replacing some (not necessarily proper)
subterm f'(dv..., d,,) of s by d,

where f(dx,..., dn) —> d. We say that seT is
irreducible if there isno t e 7 such that s => t.

Finally, for s, t e 7, we say that s reduces to t
if there exists 10, rl,...,r,,e7’ such that s = r0
=>rXx=pneee=Frn=t,

Now we can define the equivalence relation A
on7.Let5 teT.

Then sAr if there exists u e 7 such that s
reduces to u and t reduces to u. To prove that
A is an equivalence relation, we use the
following lemma.

Lemma 2. Let s&T. Then there exists a
unique irreducible t e T such that s reduces to
t. (We say that t is the irreducible form of s.)

PROOF OF LEMMA 2. That there exists an
irreducible form of each s e 7 is immediate,
since in each reduction u => v, v has fewer
subterms than u.

To prove that irreducible forms are unique,
first note that if /'(Ji, » * -.m?,,) reduces to
g'(*i»..., tm), then f = ¢', and that the last step
in any reduction of f’(s1, to an element d"C
hence has the form f'(d1,..., dn)*> d.

Structural induction can then be used to show
that the assumption that 5 has two distinct
irreducible forms leads to a contradiction. O

Lemma 3. A is an equivalence relation.

PROOF OF LEMMA 3. Clearly, A is
reflexive and symmetric. That A is transitive
follows immediately from Lemma 2. o

We now define the domain of the model M*
to be 7/A, the set of A-equivalence classes in
7. 1fte 7, we let [f] denote the A-equivalence
class containing t. Note that 7/A contains a
copy of C via the injective mapping d —>
[d]. Thus, in essence, we have simply
enlarged C in a particular way to obtain a
domain for M*.

If ¢ is a constant in L* and M assigns c'eC to
c, then M* assigns [c'] in 7/A to c. Let /gL*
be an w-ary function. Suppose M assigns the
mapping /' to /.

Then M* assigns the mapping from (7/A)"
into 7/A defined by ([ij,....[1,,])-» to /. It is
easy to see that this mapping is well defined.
Note that this mapping is an extension of /'.

Suppose p is an n-ary predicate in L*. If M
assigns the relation p' to p, then M* assigns
the relation {([d1]....,[dn]):(d1,...,dn)"p} on
(7/A)" to p.

To a type predicate t, M* assigns the unary
relation {[d]: de Cr). In essence, M* assigns
CT to r. Finally, M* assigns the identity
relation on 7/Ato = .

This completes the definition of the
interpretation M* for comp(D* U 4>). We
now check that M* is a model for comp(2)*
U $). Much of the verification is routine, and
we take the liberty of omitting some details.

We first check that M* is a model for the
equality theory of comp(D* U $). The eight
axioms of the equality theory are given in
[10] or [9, p. 70]. Apart from axiom(4), these
axioms are easily seen to be satisfied. Axiom
(4) is

V(t[x] # x), where t[x] is a term containing X
and different from x.

That this axiom is satisfied follows
immediately from the next lemma.

Lemma 4. Letr,se T. If ris a proper subterm
of s, then rQis.

PROOF OF LEMMA 4. Suppose r A's. Then
there exists an irreducible (e i such that r
reduces to t and s reduces to t. Let i/eThe the
result of replacing the occurrence of r in s by
t. Then t is a proper subterm of u, and u
reduces to t. If t e C, then we obtain a
contradiction using axiom (4) of the equality
theory for D. Otherwise, t has the form

in which case we again have a
contradiction, since it isimpossible for u to
reducetot. o

The remainder of the verification that M* is a
model for comp(Z>* U$) depends on another
lemma. For this we need a definition. A
variable assignment V wrt M is an assignment
to each variable x in L of an element d e CT,
where t is the type of x. Corresponding to V,
there is a variable assignment V* wrt M*
which assigns [d] to x.

Lemma 5. Let W be a (not necessarily closed)
typed first order formula, V a variable
assignment wrt M, and V* the corresponding
variable assignment wrt M*. Then W is true
wrt M

and V iff W* is true wrt M*
and V*.

This lemma is a variant of a well-known
result (Lemma 43A in [3]). The proof is a
straightforward induction argument on the
structure of W.

Using Lemma 5, it can now be checked that
M* is a model for the remainder of comp(£)*

U $). The domain closure axioms for D are
used to show that M* is a model for the only-
if halves of the completed definitions of the
type predicates.

We have now finally shown that M* is a
model for comp(D* U 0). Since W* is a
logical consequence of comp(Z2)* UQO), we
have that M* is a model for W*. Using
Lemma 5 again, we obtain that M is a model
for W. Thus W is a logical consequence of
comp(D). This completes the proof of Lemma
1. o

We can use Lemma 1 in place of Lemma 4 of
[10] to obtain the following theorem, which is
a generalization of Theorem 3 of [10].

Theorem 1. Let D be a database, Q a query,
and R a safe computation rule. Then every R-
computed answer substitution for DU {Q} is
a correct answer substitution for comp(D)U

{Q}.

Theorem 1 is the fundamental result which
guarantees the soundness of our query
evaluation process. The proof of this theorem
(which includes Lemma 1 and several
lemmas and theorems in [10]) is indeed long
and complicated. However, it would be a
mistake to conclude that the implementation
of our query evaluation process is
correspondingly complicated. In fact, the
opposite is the case. The main part of the
implementation concerns the 10
transformations given in [10]. These can be
implemented in a PROLOG program which
contains one clause for each transformation
plus a short procedure for locating free

variables. Also, it is easy to avoid the explicit
introduction of new predicates which was
formally required in [10]. A direct
implementation of types would also be easy.
However, such an implementation would be
inefficient, and hence some optimizations
would be required.

4, INTEGRITY CONSTRAINTS

In this section, we prove that our
implementation of integrity constraints is
sound. We also prove that our simplification
method for implementing integrity constraints
Is sound.

The standard method for determining whether
a database satisfies or violates an integrity
constraint W is by evaluating the query «- W.
The idea is as follows. We evaluate the query
*- W. If this query succeeds (that is, if we
obtain an SLDNF-re- futation), then Theorem
2 below shows that D satisfies W.

Similarly, if the query fails finitely (that is, if
we obtain a finitely failed SLDNF-tree), then
Theorem 2 shows that D violates W. For the
precise definitions of these concepts, we refer
the reader to [10].

Theorem 2 below generalizes Theorems 4 and
5 of [10]. The proof is exactly as in [10],
except the Lemma 1 above is used instead of
Lemma 4 of [10]

Theorem 2. Let D be a database, W an
integrity constraint, and R a safe computation
rule. Suppose comp(D) is consistent.

(@) If there exists an SLDNF-refutation of
D U {<- W} via R, then D satisfies W.

(b) If D U {«- W} has a finitely failed
SLDNF-tree via R, then D violates W.

Next we turn to the simplification method for
implementing integrity constraints. Let D be a
database. Suppose a user requests that some
fact A be deleted from D. Since D is a
deductive database, A may not be explicitly
present in D, but instead be a logical
consequence of D. Thus, to perform the user’s
request, the system may instead delete some
other fact (or facts) explicitly present in the
database. This will result in A no longer being
a logical consequence of D. Intuitively, we
expect the deleted fact (or facts) to be
“minimal”, that is, their deletion should
change D as little as possible. In relational
database terminology, finding the right fact
(or facts) to delete is called the view update
problem. For an addition to a deductive
database the situation is much simpler, since
we can explicitly add the fact.

In fact, we are not directly concerned with
this problem here. We assume that, for
whatever reason, the system has to either add
a clause to a database or delete an (explicitly
present) clause from the database. Such an
update can cause an integrity constraint to be
violated.

The simplification method is concerned with

the problem of checking with the least
amount of work that all the integrity
constraints are still satisfied. The key idea is
to use the fact that an integrity constraint was
satisfied before the update was made either to
eliminate the integrity constraint from further
consideration or to construct simplified
versions of it which must then be checked.
The intention is that the simplified versions
will be easier to check than the original
constraint. This idea is well known in the
context of relational databases (see [13] and
the references therein). We prove that this
simplification method is also sound for
deductive databases. In this context, matters
are greatly complicated by the presence of
rules.

To cover the most general situation with a
single theorem, we use the concept of a
transaction. A transaction is a finite sequence
of additions of clauses to a database and
deletions of clauses from a database. If D is a
database and t is a transaction, then the
application of t to D produces a new database
D', which is obtained by applying in turn each
of the deletions and additions in t.

We assume that, in any transaction, we do not
have the addition and deletion of the same
clause. As the deletions and additions in a
transaction can then be performed in any
order, we assume that all the deletions are
performed before the additions. With regard
to integrity constraint checking, a transaction
Is indivisible, so we need only check the
constraints at the end of the transaction. Note
that we can use a single transaction to pass
from any database D to any other database D'.

The results which follow all concern
databases, which, by definition, are based on
a typed language. The proofs of these results
use various definitions and results from [9]

In fact, we will actually require the typed
versions of these definitions and results. In all
cases, the required modifications to what
appears in [9] are very simple.

In what follows, any reference to a definition
or result in [9] involving a language actually
refers to the appropriate typed version.

To obtain the simplification theorem, we have
found it necessary to restrict D to be a definite
database. A definite database clause is a
database clause that has the form A*-A1 A eee
AA,,,

where Al,..,An are atoms. A definite
database is a database that consists of definite
database clauses only. The reason for this
restriction is that the proof depends crucially
on the monotonicity of the mapping TD
(defined below) associated with D. Note that,
by Propositions 5.1 and 14.3 of [9], comp(D)
Is consistent if D is definite.

Suppose L is the typed language underlying
the database D. We make the assumption
throughout that, whatever changes D may
undergo, L remains fixed. Thus, for example,
adding a new clause to D does not introduce
new constants into the language. This is
effectively the assumption that is made in
[13],

Implementing the simplification method
involves computing two sets of atoms,
computing two sets of substitutions by
unifying atoms in the sets with atoms in an

integrity constraint, and evaluating
corresponding instances of the integrity
constraint. We begin with the definition of the
appropriate sets of atoms.

Definition. Let D and D' be definite databases
such that D ¢ D'. We define the set atomO D,
inductively as follows:

atomODD.={A:A<— AxAmmmAAme
D'\ Z>},

atom™1,' = {Ad: A<’ AX AmmmAAme D,
B e atom”c D,,

6 is the mgu of some At and B },
atomfl Z). = (J atom"fl D,
n>0

To motivate the above definition, consider the
case when we add a fact A to a database D to
obtain a database D'. An important task of the
simplification method is to capture the
difference between a model for comp(D') and
a model for comp(D). In the case that D is a
relational database, we see that atomfl D, is
{A}, which is precisely the difference
between a model for comp(D) and a model
for comp(Z)"). (In this case the models are
essentially unique [15].) For a deductive
database, the presence of rules means that the
difference between the models could be
larger. However, as we shall see, atom”, D,
can still be used to capture the difference
between the two models.

A preinterpretation of a database D is an

interpretation of D that omits the assignments
of relations to predicates [9, p. 71].

Definition. Let / be a preinterpretation of a
database D, V a variable assignment wrt J,
and A an atom.

Suppose A is p(tx,..., tn), and d1,...,dn are the
term assignments of tv..., t,, wrt J and V. We
call Aj v =p(dl,..., d,,) the J-instance of A wrt
V. Let [A\j= {AJV: F is a variable assignment
wrt /}.

We call each element of [A\s a J-instance of
A.

We also call each p(dl...., d,,) a J-instance.
Each interpretation based on J can now be
identified with a subset of /-instances as in [9,
p. 72],

Definition. Let D and D' be definite databases
such that DC.D' and J a preinterpretation of
D. We define instB fl, y = U/4eatomD DI]y.

The essential property of inst® D, j is
presented in Lemma 6 and used in Theorem 3
to capture the difference between models of
comp(D) and comp(D").

We now define a monotonie mapping Tijl,
from the lattice of interpretations based on J
to itselfas in [9, p. 72],

Definition. Let / be a preinterpretation of a
definite database D.

Let | be an interpretation based on J.

Then 77(7)= (Ajy: A *—~Al A m m m A
A,,eD, F is a variable assignment wrt J, and

{(Ar)J V,... ,(An)j y} c I). It is convenient to
suppress the J and denote this mapping by
TD.

We also define E = UT[= T(*> x)]7.
Subsequent use of E ensures that all models
considered are normal.

Lemma 6. Let D and D' be definite databases
such that D ¢ D'. Let J be a preinterpretation
of D.

(@) Let M' be an interpretation based on J
for D’ such that M' U E is a model for
comp(D"). Then we have M'\ Tg(M") ¢ instD
D, j for every ordinal a.

(b) Let M be an interpretation based on J
for D such that MU E is a model for
comp(D). Then we have Tg,(M) \M Q instD
D, j for every ordinal a.

PROOF, (a): First note that M' is a fixpoint of
TD,, by Proposition 14.3 of [9]. Hence
ToiMMQM', and so Tg(M") is defined for
every ordinal a. The proof is by transfinite
induction. We consider the following two
cases.

Case 1: ais a limit ordinal. The case a =0 is
trivial. Otherwise, M' \ 7S(M") — M" \ Dp<
aTg(M’) = \Up<a[M' \ TA(M')\ ¢ inst® My, by
the induction hypothesis.

Case 2: a is a successor ordinal. The case a =
1 is trivial. Otherwise, note that M'\ Tg(M") =
M’ \ Td(M"] U [Td(M") \ Tg(M"].

Suppose that B g Td(M")\ Tg(M"). Then there
exists a clause A*-Ax A e« A A,, in D such
that, for some variable assignment V wrt / and
for some i, B is the /-instance of A wrt V, B,
Is the /-instance of Al wrt V, and Bl 6M"\
TE~I(M").

Thus, by the induction hypothesis, B,. e instD
D, }. Hence Bi is also a /-instance of some C
g atomD D,. By Lemma 15.1(a) of [9], A, and
C are unifiable with mgu 0 = { xx/rv..,,
xm/rm}, say.

Since C g atom D D, and Afi = CO, we have
that Ad g atomO D,, By Lemma 15.1(b) of [9],
the variable assignment that maps A t and C
to Bi also maps Xj and to the same domain
element, for each j.

Hence B is also a /-instance of AO, and so B
g instfl Ly j.

(b) : The proofis similar to part (a). O
Let W be a formula in prenex conjunctive
normal form. If a negative literal — A

appears in some conjunct of the matrix of W,
we say that A is a negated atom in W. If a
positive literal A appears in some conjunct of
the matrix of W, we say that A is an atom in
W.

The addition of a clause C to a database D
may cause a /-instance of a negated atom in
W that is not in a model M of comp(D) to be
in a model M' of comp(Z) U {C}), and thus
cause W to be false wrt M'. The set 9 in
Theorem 3 below describes all the ways in
which this may occur, and which instances of
W must hence be checked.

A similar comment applies to deletions and
the set 'S'. We now state the simplification
theorem for integrity constraints.

Theorem 3. Let D and D’ be definite
databases, and t a transaction whose
application to D produces D'. Suppose t
consists of a sequence of deletions followed
by a sequence of additions and that the
application of the sequence of deletions to D
produces the intermediate database D".

Let W = Vjcl ¢ ¢ « VX*IV' be an integrity
constraint in prenex conjunctive normal form.
Suppose D satisfies W.

Let 0 = {0:0 is the restriction to x1,...,x,, of an
mgu of a negated atom in W and an atom in
atom0.- D.} and = {jp: \p is the restriction to
X,..., Xn of an mgu of an atom in W and an
atom in atomD» D). Then we have the
following properties:

(@) D' satisfies W iff D' satisfies \f(W'4>)
forall<f>GOU

(b) If DU {*-V(W'<j>)} has an SLDNF-
refutation for all c[) g 0 U t, then D' satisfies
W.

(c) IfD'U{« has a finitely failed
SLDNF-tree for some <;> G 0 U 'S', then D’
violates W.

Proof, (a): Suppose D' satisfies V(W'fy) for
all <j> g 0 u'S. Let M' be an interpretation
for D’ based on / such that M' uf is a model
for comp(D").

Since Td,,(M'") ¢ M' and TD,, is monotonic, by
Propositions 5.3 and 14.3 of [9] there exists
an ordinal a such that M” U E is a model for
comp(Z>"), where M” = Tg,,(M’). Similarly,
there exists an ordinal /3 such that MU E is a
model for comp(D), where M = T%(M”). By

supposition, W is true wrt Mu E. Let V be a
variable assignment wrt /. We have to prove
that W' is true wrt M’ U E and V. If V* is a
variable assignment that agrees with V on
x15..., x,,, then we say V* is compatible with
V. We consider the following two cases.

Case 1: For every negated atom A in W and
for every V* compatible with V, the J-
instance p(dx,..., d,,) of A wrt V* is not in M'
\ M,

and for every atom B in W and for every V*
compatible with V, the J-instance q(ex,... ,em)
of B wrt V* is not in M \ M'". Let A be a
negated atom in W, and suppose that, for
some V* compatible with V, the /-instance
p(dl,....dn) of A wrt V* is not in M. By the
condition of case 1, we have that p(dY,..., dn)
£ M'\ M. Hence p(dv..., dn) £ M".

Let B be an atom in W, and suppose that, for
some V* compatible with V, the /-instance
g(el,...em) of B wrt V* is in M. By the
condition of case 1, we have that g(ev..., em)
IM\ AT. Hence q(ex,..., em) G M". It follows
from this that W' is true wrt M' U E and V.

